1,822
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of acetate metabolism modulation on 2'-fucosyllactose production in engineered Escherichia coli

, , , , , ORCID Icon & ORCID Icon show all
Pages 425-436 | Received 30 Nov 2020, Accepted 01 Feb 2021, Published online: 25 Feb 2021

References

  • Bode L. The functional biology of human milk oligosaccharides. Early Hum Dev. 2015;91(11):619–622.
  • Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–1162.
  • Kunz C, Rudloff S, Baier W, et al. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000;20:699–722.
  • Castanys-Munoz E, Martin MJ, Prieto PA. 2'-fucosyllactose: an abundant, genetically determined soluble glycan present in human milk. Nutr Rev. 201371(12):773–789.
  • Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005;25:37–58.
  • Han NS, Kim TJ, Park YC, et al. Biotechnological production of human milk oligosaccharides. Biotechnol Adv. 2012;30(6):1268–1278.
  • Chin YW, Park JB, Park YC, et al. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose. Bioprocess Biosyst Eng. 201336(6):749–756.
  • Hollands K, Baron CM, Gibson KJ, et al. Engineering two species of yeast as cell factories for 2'-fucosyllactose. Metab Eng. 2019;52:232–242.
  • Sprenger GA, Baumgärtner F, Albermann C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol. 2017;258:79–91.
  • Bode L, Contractor N, Barile D, et al. Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutr Rev. 2016;74(10):635–644.
  • Fernandezmayoralas A, Martinlomas M. Synthesis of 3-fucosyl-lactose and 2'-fucosyl-lactose and 3,2'-difucosyl-lactose from partially benzylated lactose derivatives. Carbohydr Res. 1986;154:93–101.
  • Jain RK, Locke RD, Matta KL. A convenient synthesis of O-α-L-fucopyranosyl-(1→2)-O-β-D-galactopyranosyl-(1→4)-D-glucopyranose (2'-O-α-l-fucopyranosyllactose). Carbohydr Res. 1991;212:C1–C3.
  • Izumi M, Tsuruta O, Harayama S, et al. Synthesis of 5-thio-L-fucose-containing disaccharides, as sequence-specific inhibitors, and 2'-fucosyllactose, as a substrate of alpha-L-fucosidases. J Org Chem. 1997;62(4):992–998.
  • Pereira CL, McDonald FE. Synthesis of human milk oligosaccharides: 2'- and 3'-fucosyllactose. Heterocycles. 2012;84(1):637–655.
  • Wang GN, Andre S, Gabius HJ, et al. Bi- to tetravalent glycoclusters: synthesis, structure-activity profiles as lectin inhibitors and impact of combining both valency and headgroup tailoring on selectivity. Org Biomol Chem. 2012;10(34):6893–6907.
  • Rencurosi A, Poletti L, Panza L, et al. Improvement on lipase catalysed regioselective O-acylation of lactose: a convenient route to 2'-O-fucosyllactose. J Carbohydr Chem. 2001;20(7&8):761–765.
  • Scheppokat AM, Morita M, Thiem J, et al. Enzymatic alpha(1→2)-L-fucosylation: investigation of the specificity of the alpha(1→2)-L-galactosyltransferase from Helix pomatia. Tetrahedron-Asymmetry. 2003;14(16):2381–2386.
  • Albermann C, Piepersberg W, Wehmeier UF. Synthesis of the milk oligosaccharide 2'-fucosyllactose using recombinant bacterial enzymes. Carbohydr Res. 2001;34(2):97–103.
  • Agoston K, Hederos MJ, Bajza I, et al. Kilogram scale chemical synthesis of 2'-fucosyllactose. Carbohydr Res. 2019;476:71–77.
  • Lee W-H, Pathanibul P, Quarterman J, et al. Whole cell biosynthesis of a functional oligosaccharide, 2'-fucosyllactose, using engineered Escherichia coli. Microb Cell Fact. 2012;11:48.
  • Chin Y-W, Seo N, Kim J-H, et al. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose. Biotechnol Bioeng. 2016;113(11):2443–2452.
  • Ni Z, Li Z, Wu J, et al. Multi-path optimization for efficient production of 2'-fucosyllactose in an engineered Escherichia coli C41 (DE3) derivative. Front Bioeng Biotechnol. 2020;8(1):13.
  • Stein DB, Lin YN, Lin CH. Characterization of Helicobacter pylori alpha 1,2-fucosyltransferase for enzymatic synthesis of tumor-associated antigens. Adv Synth Catal. 2008;350(14–15):2313–2321.
  • Lee WH, Han NS, Park YC, et al. Modulation of guanosine 5'-diphosphate-D-mannose metabolism in recombinant Escherichia coli for production of guanosine 5'-diphosphate-L-fucose. Bioresour Technol. 2009;100(24):6143–6148.
  • Huang D, Yang K, Liu J, et al. Metabolic engineering of Escherichia coli for the production of 2'-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metab Eng. 2017;41:23–38.
  • Farmer WR, Liao JC. Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol. 1997;63(8):3205–3210.
  • Nakano K, Rischke M, Sato S, et al. Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol. 1997;48(5):597–601.
  • Chin Y-W, Kim J-Y, Kim J-H, et al. Improved production of 2'-fucosyllactose in engineered Escherichia coli by expressing putative α-1,2-fucosyltransferase, WcfB from Bacteroides fragilis. J Biotechnol. 2017;257:192–198.
  • Lynch AS, Lin ECC. Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: characterization of DNA binding at target promoters. J Bacteriol. 1996;178(21):6238–6249.
  • Sauer U, Hatzimanikatis V, Bailey JE, et al. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol. 1997;15(5):448–452.
  • Fischer E, Zamboni N, Sauer U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem. 2004;325(2):308–316.
  • Perrenoud A, Sauer U. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol. 2005;187(9):3171–3179.
  • Vemuri GN, Eiteman MA, Altman E. Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng. 2006;94(3):538–542.
  • Nikel PI, Pettinari MJ, Ramirez MC, et al. Escherichia coli arcA mutants: metabolic profile characterization of microaerobic cultures using glycerol as a carbon source. J Mol Microbiol Biotechnol. 2008;15(1):48–54.
  • Kim HJ, Hou BK, Lee SG, et al. Genome-wide analysis of redox reactions reveals metabolic engineering targets for D-lactate overproduction in Escherichia coli. Metab Eng. 2013;18:44–52.
  • Yamamoto K, Ishihama A. Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol. 2003;47(1):183–194.
  • Gui LZ, Sunnarborg A, Pan B, et al. Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol. 1996;178(1):321–324.
  • Cortay JC, Negre D, Galinier A, et al. Regulation of the acetate operon in Escherichia coli: purification and functional characterization of the IclR repressor. EMBO J. 1991;10(3):675–679.
  • Cozzone AJ. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu Rev Microbiol. 1998;52:127–164.
  • El-Mansi M, Cozzone AJ, Shiloach J, et al. Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Curr Opin Microbiol. 2006;9(2):173–179.
  • Scheel RA, Ji L, Lundgren BR, et al. Enhancing poly(3-hydroxyalkanoate) production in Escherichia coli by the removal of the regulatory gene arcA. Amb Express. 2016;6(1):120.
  • Hun J, Jung H-M, Jung M-Y, et al. Effects of gltA and arcA mutations on biomass and 1,3-propanediol production in Klebsiella pneumoniae. Biotechnol Bioproc E. 2019;24(1):95–102.
  • Ding Z, Fang Y, Zhu L, et al. Deletion of arcA, iclR, and tdcC in Escherichia coli to improve l-threonine production. Biotechnol Appl Biochem. 2019;66(5):794–807.
  • Nanchen A, Schicker A, Revelles O, et al. Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. J Bacteriol. 2008;190(7):2323–2330.
  • Waegeman H, Beauprez J, Moens H, et al. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol. 2011;11:70.
  • Waegeman H, Maertens J, Beauprez J, et al. Effect of iclR and arcA deletions on physiology and metabolic fluxes in Escherichia coli BL21 (DE3). Biotechnol Lett. 2012;34(2):329–337.
  • Liu M, Ding Y, Chen H, et al. Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion. BMC Microbiol. 2017;17(1):10.
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–6645.
  • Lee WH, Shin SY, Kim MD, et al. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli. Appl Microbiol Biotechnol. 2012;93(6):2327–2334.
  • Wang G, Rasko DA, Sherburne R, et al. Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the alpha (1,2) fucosyltransferase gene. Mol Microbiol. 1999;31(4):1265–1274.
  • Nizam SA, Zhu J, Ho PY, et al. Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition. Biochem Eng J. 2009;44(2–3):240–250.
  • Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem. 2008;307(1–2):249–264.
  • Huber R, Roth S, Rahmen N, et al. Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation. BMC Biotechnol. 2011;11(1):22.
  • Shiloach J, Fass R. Growing E. coli to high cell density-a historical perspective on method development. Biotechnol Adv. 2005;23(5):345–357.
  • Donovan RS, Robinson CW, Glick BR. Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol. 1996;16(3):145–154.
  • Seydametova E, Yu J, Shin J, et al. Search for bacterial alpha 1,2-fucosyltransferases for whole-cell biosynthesis of 2'-fucosyllactose in recombinant Escherichia coli. Microbiol Res. 2019;222:35–42.
  • Yu S, Liu J-J, Yun EJ, et al. Production of a human milk oligosaccharide 2'-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact. 2018;17(1):101.
  • Liu J-J, Kwak S, Pathanibul P, et al. Biosynthesis of a functional human milk oligosaccharide, 2'-fucosyllactose, and L-fucose using engineered Saccharomyces cerevisiae. ACS Synth Biol. 2018;7(11):2529–2536.
  • Deng J, Gu L, Chen T, et al. Engineering the substrate transport and cofactor regeneration systems for enhancing 2'-fucosyllactose synthesis in Bacillus subtilis. ACS Synth Biol. 2019;8(10):2418–2427.