1,504
Views
5
CrossRef citations to date
0
Altmetric
Articles

Endophytic Bacillus altitudinis Q7 from Ginkgo biloba inhibits the growth of Alternaria alternata in vitro and its inhibition mode of action

, , , &
Pages 880-894 | Received 22 Feb 2021, Accepted 25 May 2021, Published online: 15 Jun 2021

References

  • Gur L, Reuveni M, Cohen Y. Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by Alternaria alternate f. sp.malion cv Pink lady in Israel. Eur J Plant Pathol. 2017;147(3):695–708.
  • Amirchakhmaghi N, Yousefzadeh H, Hosseinpour B, et al. First insight into genetic diversity and population structureof the Caucasian wild apple (Malus orientalis Uglitzk.) in the Hyrcanian forest (Iran) and its resistance to apple scab and powdery mildew. Genet Resour Crop Evol. 2018;65(4):1255–1268.
  • Daulagala PWHKP, Allan-Atkins EJ. Chitinolytic activities of endophytic bacteria isolated from symptom-free Chinese cabbage leaves. Asian J Microbiol Biotechnol Environ Sci. 2015;17(3):603–609.
  • Xu FX, Wang SY, Li YJ, et al. Yield enhancement strategies of rare pharmaceutical metabolites from endophytes. Biotechnol Lett. 2018;40(5):797–807.
  • Chukalo CE, Chalannavar RK. Endophytic mycoflora and their bioactive compounds from Azadirachta Indica: A comprehensive review. JoF. 2018;4(2):42.
  • Das G, Park SJ, Baek KH. Diversity of endophytic bacteria in a fern species Dryopteris uniformis (Makino) Makino and evaluation of their antibacterial potential against five foodborne pathogenic bacteria. Foodborne Pathog Dis. 2017;14(5):260–268.
  • Shan SJ, Luo J, Xu DR, et al. Elucidation of micromolecular phenylpropanoid and lignan glycosides as the main antioxidants of Ginkgo seeds. Ind Crops Products. 2018;112:830–838.
  • Tang WY, Li GZ, Chen BQ, et al. Evaluating ternary deep eutectic solvents as novel media for extraction of flavonoids from Ginkgo biloba. Sep Sci Technol. 2017;52(1):91–99.
  • Samir D, Charles W, Michael W. 2000 Biologically based technology for the control of postharvest diseases of fruits and vegetables. Microb Food Contam. Boca Raton, FL: CRC Press, 187–205. https://doi.org/10.1201/9781420039030.ch13.
  • Chan Z, Tian S. Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action. Postharvest Biol Tech. 2005;36(2):215–223.
  • Liu C, Yin XH, Wang QG, et al. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit. J Sci Food Agric. 2018;98(15):5756–5763.
  • Grahovac MS, Balaz JS, Grahovac JA, et al. Screening of antagonistic activity of selected microorganisms against apple rot pathogens. Romanian Biotechnol Lett. 2014;19(1):8959–8965. https://doi.org/10.2147/OTT.S38846.
  • Yang R, Fan XJ, Cai XQ, et al. The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper Phytophthora blight. Biol Control. 2015;85:59–67.
  • Ye S, Ma Z, Liu Z, et al. Effects of carbohydrate sources on biosorption properties of the novel exopolysaccharides produced by Arthrobacter ps-5. Carbohydr Polym. 2014;112:615–621.
  • El-Arnaouty MB, Eid M, Tablawy SYEL. Impact of nano-ZnO/grafted textile on the outer membrane permeability of some pathogenic bacteria. Bull Mater Sci. 2017;40(6):1213–1224.
  • Li RP, Zhang HY, Liu WM, et al. Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. Int J Food Microbiol. 2011;146(2):151–156.
  • Guo RT, Wang ZY, Zhou C, et al. Biocontrol potential of trichoderma asperellum mutants t39 and t45 and their growth promotion of poplar seedlings. J Forestry Res. 2018;31(03):333–341. https://doi.org/10.1007/s11676-018-0797-0.
  • Sui GQ, Song XQ, Zhang BY, et al. Design, synthesis and biological evaluation of novel neuchromenin analogues as potential antifungal agents. Eur J Med Chem. 2019;173(3):228–239.
  • Sultana R, Islam MS, Islam MA, et al. Identification of pathogen causing common bacterial blight (CBB) of bean through the biochemical and molecular pathway and their management system. J Entomol Zool Stud. 2018;6(3):752–757.
  • Noha AM, Hossam MH, Mostafa ER, et al. Diketopiperazine derivatives from Enterobacter cloacae isolated from the red sea alga Cystoseira myrica. Egypt Pharmaceut J. 2013;12(2):163–171.
  • Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method of sugars and related substances. Anal Chem. 1956;28(3):350–356.
  • Li QF, Liu SH, Zhang HY, et al. Microdetermination of proteins by enhanced resonance light scattering spectroscopy of m-acetylchlorophosphonazo. Anal Lett. 2001;34(7):1133–1142.
  • Okuno Y, Marumoto S, Miyazawa M. Antimutagenic activity of flavonoids from Sozuku. Nat Prod Res. 2019;33(6):862–869.
  • Saeki A, Sugiyama M, Hasebe A, et al. Activation of NLRP3 inflammasome in macrophages by mycoplasmal lipoproteins and lipopeptides. Mol Oral Microbiol. 2018;33(4):300–311.
  • Lehmann PF. 2010. Fungal structure and morphology. In: Mahy BW, Meulen VT, Borriello SP, et al., editors. Topley & Wilson’s microbiology and microbial infections. United States: Wiley, 132–145. https://doi.org/10.1002/9780470688618.taw0130
  • Duitman EH, Hamoen LW, Rembold M, et al. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A. 1999;96(23):13294–13299.
  • Saoussen BK, Hanen BA, Laarif ST. Biosurfactant produced by Bacillus subtilis V26: a potential biological control approach for sustainable agriculture development. Organic Agric. 2020;(3):117–124. https://doi.org/10.1007/s13165-020-00316-0.
  • Sharma D, Singh SS, Baindara P, et al. Surfactin like broad spectrum antimicrobial lipopeptide co-produced with sublancin from Bacillus subtilis strain A52: dual reservoir of bioactives. Front Microbiol. 2020;11:1167. https://doi.org/10.3389/fmicb.2020.01167.
  • Zahoor UH, Thani RA, Alnaimi H, et al. Investigation and application of Bacillus licheniformis volatile compounds for the biological control of toxigenic aspergillus and Penicillium spp. ACS Omega. 2019;4(17):17186–17193.
  • Liu YA, Lu J, Sun J, et al. Membrane disruption and dna binding of Fusarium graminearum cell induced by c16-fengycin a produced by Bacillus amyloliquefaciens. Food Control. 2019;102:206–213.
  • Douaiher MN, Nowak E, Durand R, et al. Correlative analysis of Mycosphaerella graminicola pathogenicity and cell wall-degrading enzymes produced in vitro: the importance of xylanase and polygalacturonase. Plant Pathol. 2007;56(1):79–86.
  • He YZ, Li ZR, Tan FQ, et al. Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance. Food Chem. 2019;292(15):314–324.
  • Jing G, Hua H, Yang B, et al. Effect of pyrogallol on the physiology and biochemistry of litchi fruit during storage. Chem Central J. 2013;7(1):19.
  • Dragun Z, Filipović MV, Krasnići N, et al. Malondialdehyde concentrations in the intestine and gills of Vardar chub (Squalius vardarensis Karaman) as indicator of lipid peroxidation. Environ Sci Pollut Res Int. 2017;24(20):16917–16926.
  • Dhindsa RS, Pamela PD, Thorpe TA. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 1981;32(1):93–101.
  • Li CW. 2015. Antibacterial activity of strain T-33 and its inhibition mechanism against Populus sinensis. Heilongjiang, China: Heilongjiang University Press.
  • Li QQ, Xie F, Zhao YM, et al. Inhibitory effect of postharvest yeast mannan treatment on alternaria rot of tomato fruit involving the enhancement of hemicellulose polysaccharides and antioxidant metabolism. Sci Hortic. 2021;277(3):109798.
  • Weerawardana MBS, Thiripuranathar G, Paranagama PA. Natural antibrowning agents against polyphenol oxidase activity in Annona muricata and Musa acuminata. J Chem. 2020;2020(1):1–6.
  • Guo YJ, Zhou JX, Zhang JR, et al. Chitosan combined with sodium silicate treatment induces resistance against rot caused by Alternaria alternata in postharvest jujube fruit. J Phytopathol. 2019;167(7–8):451–410.
  • Chen MC, Wang JP, Zhu YJ, et al. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain. J Appl Microbiol. 2019;126(5):1519–1529. https://doi.org/10.1111/jam.14213.
  • Zhou H, Cong B, Tian Y, et al. Characterization of novel cyclic lipopeptides produced by Bacillus sp. SY27F. Process Biochem. 2019;83:206–213.
  • de Souza Freitas F, Coelho de Assis Lage T, Ayupe BAL, et al. Bacillus subtilis tr47ii as a source of bioactive lipopeptides against gram-negative pathogens causing nosocomial infections. 3 Biotech. 2020;10(11):1–10.
  • Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115–125.
  • Fatemeh N, Mohammad-Esmaeel K, Lamrart-Szczapa E. Isolation, identification, and characterization of a novel chemolithoautotrophic bacterium with high potential in biodesulfurization of natural or industrial gasses and biogas. Energy Sources Part A: Recov Utilization Environ Effects. 2017;39(10):971–977. https://doi.org/10.1080/15567036.2016.1263255.
  • He FT, Zhao LN, Zheng XF, et al. Investigating the effect of methyl jasmonate on the biocontrol activity of Meyerozyma guilliermondii against blue mold decay of apples and the possible mechanisms involved. Physiol Mol Plant Pathol. 2020;109:101454.