1,656
Views
0
CrossRef citations to date
0
Altmetric
Articles

A high-throughput method for profiling fatty acids in plant seeds based on one-step acid-catalyzed methylation followed by gas chromatography-mass spectrometry

, , , , &
Pages 1076-1085 | Received 31 Mar 2021, Accepted 08 Jul 2021, Published online: 30 Jul 2021

References

  • Thomas A, Matthäus B, Fiebig HJ. Fats and fatty oils. In: Ullmann’s encyclopedia of industrial chemistry. Vol. 14. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 1–84.
  • Karaman M, Atlagić K, Novaković A, et al. Fatty acids predominantly affect anti-hydroxyl radical activity and FRAP value: the case study of two edible mushrooms. Antioxidants. 2019;8(10):480–491.
  • Haug A, Høstmark AT, Harstad OM. Bovine milk in human nutrition-a review. Lipids Health Dis. 2007; 6:25–41.
  • Berner D. Aocs’ 4th edition of methods. J Am Oil Chem Soc. 1989;66(12):1749–1749.
  • Chen MX, Wang Z, Zhu YN, et al. The effect of transparent TESTA2 on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis thaliana. Plant Physiol. 2012;160(2):1023–1036.
  • Chen MX, Du X, Zhu Y, et al. Seed fatty acid reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis thaliana. Plant Cell Environ. 2012;35(12):2155–2169.
  • Chernova A, Mazin P, Goryunova S, et al. Ultra-performance liquid chromatography-mass spectrometry for precise fatty acid profiling of oilseed crops. PeerJ. 2019; 7:e6547–6543.
  • Lee EJ, Oh M, Hwang JU, et al. Seed-specific overexpression of the pyruvate transporter BASS2 increases oil content in Arabidopsis Seeds. Front Plant Sci. 2017; 8:194–204.
  • Poirier Y, Ventre G, Caldelari D. Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol. 1999;121(4):1359–1366.
  • Mu JY, Tan HL, Zheng Q, et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis thaliana. Plant Physiol. 2008;148(2):1042–1054.
  • Quehenberger O, Armando AM, Dennis EA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta. 2011;1811(11):648–656.
  • Hoving LR, Heijink M, van Harmelen V, et al. GC-MS analysis of short-chain fatty acids in feces, cecum content, and blood samples. Methods Mol Biol. 2018; 1730:247–256.
  • Qu S, Du Z, Zhang Y. Direct detection of free fatty acids in edible oils using supercritical fluid chromatography coupled with mass spectrometry. Food Chem. 2015; 170:463–469.
  • Matsumoto Y, Ando Y, Hiraoka Y, et al. A simplified gas chromatographic fatty-acid analysis by the direct saponification/methylation procedure and its application on wild tuna larvae. Lipids. 2018;53(9):919–929.
  • Liu Z, Ezernieks V, Rochfort S, et al. Comparison of methylation methods for fatty acid analysis of milk fat. Food Chem. 2018; 261:210–215.
  • Christie WW. Lipid analysis. 2nd ed. Oxford: Pergamon Press; 1982.
  • Kamga AW, Behar F. Hatcher P.G. Quantitative analysis of long chain fatty acids present in a Type I kerogen using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry: compared with BF3/MeOH methylation/GC-FID. J Am Soc Mass Spectrom. 2014; 5:880–890.
  • Antolín EM, Delange DM, Canavaciolo VG. Evaluation of five methods for derivatization and GC determination of a mixture of very long chain fatty acids (C24:0-C36:0). J Pharm Biomed Anal. 2008;46(1):194–199.
  • Park Y, Albright KJ, Cai ZY, et al. Comparison of methylation procedures for conjugated linoleic acid and artifact formation by commercial (trimethylsilyl) diazomethane. J Agric Food Chem. 2001;49(3):1158–1164.
  • Li Y, Beisson F, Pollard M, et al. Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry. 2006;67(9):904–915.
  • Ettaki H, Troncoso-Ponce MA, To A, et al. Overexpression of MYB115, AAD2, or AAD3 in Arabidopsis thaliana seeds yields contrasting omega-7 contents. Plos One. 2018;13(1):e0192156.
  • Pleite R, Martínez-Force E, Garcés R. Increase of the stearic acid content in high-oleic sunflower (Helianthus annuus) seeds. J Agric Food Chem. 2006;54(25):9383–9388.
  • Liu F, Xia Y, Wu L, et al. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Gene. 2015;557(2):163–171.
  • Epp MD, Pollard MR. Fatty acid content and composition of Oenothera hookeri seeds containing mutant plastids. Lipids. 1993;28(11):1005–1009.
  • Kramer JK, Fellner V, Dugan ME, et al. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids. 1997;32(11):1219–1228.
  • Chen D, Hao F, Mu H, et al. S-acylation of P2K1 mediates extracellular ATP-induced immune signaling in Arabidopsis. Nat Commun. 2021;12:2750.
  • Jarsch IK, Konrad SS, Stratil TF, et al. Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in Arabidopsis and Nicotiana benthamiana. Plant Cell. 2014;26(4):1698–1711.
  • Pejin B, Bianco A, Newmaster S, et al. FAs of Rhodobryum ontariense (Bryaceae). Nat Prod Res. 2012;26(8):696–702.
  • Zhang L, Li P, Sun X, et al. Classification and adulteration detection of vegetable oils based on fatty acid profiles. J Agric Food Chem. 2014;62(34):8745–8751.
  • Chen M, Xuan L, Wang Z, et al. TRANSPARENT TESTA8 inhibits seed fatty acid accumulation by targeting several seed development regulators in Arabidopsis thaliana. Plant Physiol. 2014;165(2):905–916.
  • Lagercrantz U, Putterill J, Coupland G, et al. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J. 1996;9(1):13–20.
  • Murphy DJ. Engineering oil production in rapeseed and other oil crops. Trends Biotechnol. 1996;14(6):206–213.
  • Lee J-B, Jeong YA, Ahn DJ, et al. SPME-GC-MS analysis of methanol in biospecimen by derivatization with pyran compound. Molecules. 2019;25(1):41–52.
  • Sharafi Y, Majidi MM, Goli SAH, et al. Oil content and fatty acids composition in Brassica species. Int. J. Food. Prop. 2015;18(10):2145–2154.
  • Salimon J, Abdullah BM, Salih N. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil. Chem Cent J. 2011; 5:67–75.
  • Ahmadvand M, Sereshti H, Parastar H. Second-order calibration for the determination of fatty acids in pomegranate seeds by vortex-assisted extraction-dispersive liquid–liquid micro-extraction and gas chromatography-mass spectrometry. RSC Adv. 2015;5(15):11633–11643.