1,359
Views
4
CrossRef citations to date
0
Altmetric
Articles

Evaluation of genetic variability and relatedness among eight Centaurea species through CAAT-box derived polymorphism (CBDP) and start codon targeted polymorphism (SCoT) markers

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 1230-1237 | Received 05 Apr 2021, Accepted 22 Jul 2021, Published online: 11 Aug 2021

References

  • Garcia-Jacas N, Susanna A, Mozaffarian V, et al. The natural delimitation of Centaurea (Asteraceae: Cardueae): ITS sequence analysis of the Centaurea jacea group. Plant Syst Evol. 2000;223(3–4):185–199.
  • Mohamed TA, Elshamy AI, Abd‐ElGawad AM, et al. Cytotoxic and chemotaxonomic study of isolated metabolites from centaurea aegyptiaca. J Chin Chem Soc. 2021;68(1):159–168.
  • Bakr RO, Mohamed SA, Ayoub N. Phenolic profile of centaurea aegyptiaca L. growing in Egypt and its cytotoxic and antiviral activities. Afr J Tradit Complement Altern Med. 2016;13(6):135–143.
  • Formisano C, Sirignano C, Rigano D, et al. Antiproliferative activity against leukemia cells of sesquiterpene lactones from the turkish endemic plant Centaurea drabifolia subsp. detonsa. Fitoterapia. 2017;120:98–102.
  • Köse YB, İşcan G, Demirci B, et al. Antimicrobial activity of the essential oil of Centaurea aladagensis. Fitoterapia. 2007;78(3):253–254.
  • Reda EH, Shakour ZTA, El-Halawany AM, et al. Comparative study on the essential oils from five wild Egyptian centaurea species: effective extraction techniques, antimicrobial activity and in-silico analyses. Antibiotics. 2021;10(3):252.
  • López-Rodríguez M, García VP, Zater H, et al. Cynaratriol, a sesquiterpene lactone from Centaurea musimomum. Acta Crystallogr Sect E Struct Rep . 2009;65(Pt 8):o1867-8.
  • Flamini G, Stoppelli G, Morelli I, et al. Secondary metabolites from Centaurea isaurica from Turkey and their chemotaxonomical significance. Biochem Syst Ecol. 2004;32(6):553–557.
  • Kurian A, Sankar MA. Medicinal plants. New Delhi: New India Publishing; 2007.
  • Hegazy MEF, Abdelfatah S, Hamed AR, et al. Cytotoxicity of 40 egyptian plant extracts targeting mechanisms of drug-resistant cancer cells. Phytomedicine. 2019;59:152771.
  • Kubacey TM, Haggag EG, El-Toumy SA, Ahmed AA, et al. Biological activity and flavonoids from centaurea alexanderina leaf extract. J. Pharm. Res. 2012;5(6):3352–3361.
  • Dimkić I, Petrović M, Gavrilović M, et al. New perspectives of purple starthistle (centaurea calcitrapa) leaf extracts: phytochemical analysis, cytotoxicity and antimicrobial activity. AMB Expr. 2020;10(1):1–21.
  • Senatore F, Arnold NA, Bruno M. Volatile components of Centaurea eryngiodes Lam. and Centaurea iberica Trev.var. hermonis Bois. Lam., two Asteraceae growing wild in Lebanon. Nat Prod Res. 2005;19(8):749–754.
  • Abdallah HM, Mohamed MA, Abdou AM, et al. Protective effect of centaurea pallescens del. against CCl 4-induced injury on a human hepatoma cell line (Huh7). Med Chem Res. 2013;22(12):5700–5706.
  • El Toumy SA, Omara EA, Brouard I, et al. Flavonoids from centaurea glomerata and antioxidant activity of its extract. Planta Med. 2011;77(12):PG11.
  • Mostafa E, Fayed MA, Radwan RA, et al. Centaurea pumilio L. extract and nanoparticles: a candidate for healthy skin. Colloids Surf B Biointerfaces. 2019;182:110350.
  • Ahmed SA, Kamel EM. Cytotoxic activities of flavonoids from centaurea scoparia. Sci World J. 2014;2014:1–7.
  • Al-Saleem MS, Awaad AS, Alothman MR, et al. Phytochemical standardization and biological activities of certain desert plants growing in Saudi Arabia. Saudi Pharm J. 2018;26(2):198–204.
  • Garcia-Jacas N, Uysal T, Romashchenko K, et al. Centaurea revisited: a molecular survey of the jacea group. Ann Bot. 2006;98(4):741–753.
  • Mokhtar MM, Atia MA. SSRome: an integrated database and pipelines for exploring microsatellites in all organisms. Nucleic Acids Res. 2019;47(D1):D244–52.
  • Poczai P, Varga I, Laos M, et al. Advances in plant gene-targeted and functional markers: a review. Plant Methods. 2013;9(1):6–32.
  • Collard BC, Mackill DJ. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep. 2009;27(1):86–93.
  • Abdeldym EA, El-Mogy MM, Abdellateaf HR, et al. Genetic characterization, agro-morphological and physiological evaluation of grafted tomato under salinity stress conditions. Agronomy. 2020;10(12):1948.
  • Abouseadaa HH, Atia MA, Younis IY, et al. Gene-targeted molecular phylogeny, phytochemical profiling, and antioxidant activity of nine species belonging to family cactaceae. Saudi J Biol Sci. 2020;27(6):1649–1658.
  • Gowayed SMH, Abd El-Moneim D. Detection of genetic divergence among some wheat (Triticum aestivum L.) genotypes using molecular and biochemical indicators under salinity stress. PLoS One. 2021;16(3):e0248890.
  • Singh AK, Rana MK, Singh S, et al. CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J Plant Biochem Biotechnol. 2014;23(2):175–183.
  • Andersen JR, Lübberstedt T. Functional markers in plants. Trends Plant Sci. 2003;8(11):554–560.
  • Liu BH. Statistical genomics: linkage, mapping, and QTL analysis. London, New York: CRC Press; 2017.
  • Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32(3):314–331.
  • Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding. 1996;2(3):225–238.
  • Tessier C, David J, This P, et al. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet. 1999;98(1):171–177.
  • Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet. 1999;98(1):107–112.
  • Amiryousefi A, Hyvönen J, Poczai P. iMEC: online marker efficiency calculator. Appl Plant Sci. 2018;6(6):e01159.
  • Hilpold A, Garcia-Jacas N, Vilatersana R, et al. Taxonomical and nomenclatural notes on centaurea: a proposal of classification, a description of new sections and subsections, and a species list of the redefined section centaurea. Collect Bot. 2014;33:1–29.
  • Shoeb M, Jaspars M, MacManus SM, et al. Anti-Colon cancer potential of phenolic compounds from the aerial parts of centaurea gigantea (asteraceae). J Nat Med. 2007;61(2):164–169.
  • Dogan B, Duran A, Çetin Ö, et al. Study of phylogenetic relationship of turkish species of klasea (asteraceae) based on ISSR amplification. PhytoKeys. 2015;(56):29–40.
  • Yildirim N, Sunar S, Agar G, et al. Biochemical and molecular characterization of some centaurea species growing in the Eastern anatolia region of Turkey. Biochem Genet. 2009;47(11–12):850–859.
  • López-Pujol J, López-Vinyallonga S, Susanna A, et al. Speciation and genetic diversity in centaurea subsect. Sci Rep. 2016;6(1):37814–37818.
  • López-Alvarado J, Mameli G, Farris E, et al. Islands as a crossroad of evolutionary lineages: a case study of centaurea sect. Centaurea (compositae) from Sardinia (mediterranean basin). PloS One. 2020;15(2):e0228776.
  • Gholamian F, Etminan A, Changizi M, et al. Assessment of genetic diversity in triticum urartu thumanjan ex gandilyan accessions using start codon targeted polymorphism (SCoT) and CAAT-box derived polymorphism (CBDP) markers. Biotechnol Biotechnol Equip. 2019;33(1):1653–1662.
  • Khodaee L, Azizinezhad R, Etminan AR, et al. Assessment of genetic diversity among iranian aegilops triuncialis accessions using ISSR, SCoT, and CBDP markers. J Genet Eng Biotechnol. 2021;19(1):1–9.
  • Heikrujam M, Kumar J, Agrawal V. Genetic diversity analysis among male and female jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers. Meta Gene. 2015;5:90–97.
  • Tiwari G, Singh R, Singh N, et al. Study of arbitrarily amplified (RAPD and ISSR) and gene targeted (SCoT and CBDP) markers for genetic diversity and population structure in kalmegh [andrographis paniculata (burm. f.) nees]. Ind Crops Prod. 2016;86:1–11.