1,941
Views
1
CrossRef citations to date
0
Altmetric
Articles

Characters of a nitrobacter enrichment culture from a freshwater aquaculture pond

, &
Pages 1343-1352 | Received 03 May 2021, Accepted 27 Aug 2021, Published online: 09 Sep 2021

References

  • Hellinga C, Schellen AAJC, Mulder JW, et al. The sharon process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol. 1998;37(9):135–142.
  • Shourjeh MS, Kowal P, Drewnowski J, et al. Mutual interaction between temperature and DO set point on AOB and NOB activity during shortcut nitrification in a sequencing batch reactor in terms of energy consumption optimization. Energies. 2020;13(21):5808.
  • Kroupova HK, Valentova O, Svobodova Z, et al. Toxic effects of nitrite on freshwater organisms: a review. Rev Aquacult. 2018;10(3):525–542.
  • Spieck E, Lipski A, Klotz M. Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria. Method Enzymol. 2011;486:109–130.
  • Brown MN, Aurelio B, James D, et al. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system. FEMS Microbiol Ecol. 2013;83(1):17–25.
  • Hüpeden J, Wegen S, Off S, et al. Relative abundance of nitrotoga spp. in a biofilter of a cold-freshwater aquaculture plant appears to be stimulated by slightly acidic pH. Appl Environ Microbiol. 2016;82(6):1838–1845.
  • Navada S, Olav V, Frédéric G, et al. Biofilms remember: osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms. Water Res. 2020;176:115732.
  • Bartelme RP, Mclellan SL, Newton RJ. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox nitrospira. Front Microbiol. 2017;8:101.
  • Gonzalez-Silva BM, Jonassen KR, Bakke I, et al. Nitrification at different salinities: biofilm community composition and physiological plasticity. Water Res. 2016;95:48–58.
  • Liang F, Wen YK, Dong X, et al. Response of activity and community composition of nitrite-oxidizing bacteria to partial substitution of chemical fertilizer by organic fertilizer. Environ Sci Pollut Res. 2021;4:1–12.
  • Ma S, Zhang D, Zhang W, et al. Ammonia stimulates growth and nitrite-oxidizing activity of Nitrobacter winogradskyi. Biotechnol Equip. 2014;28(1):27–32.
  • Krishnani KK. Detection and diversity of nitrifying and denitrifying functional genes in coastal aquaculture. Aquaculture. 2010;302(1–2):57–70.
  • Cai M, Siu-Kin N, Kent LC, et al. Physiological and metagenomic characterizations of the synergistic relationships between ammonia- and nitrite-oxidizing bacteria in freshwater nitrification. Front Microbiol. 2018;9:280.
  • Elling FJ, Hemingway JD, Evans TW, et al. Vitamin B12-dependent biosynthesis ties amplified 2-methylhopanoid production during oceanic anoxic events to nitrification. Proc Natl Acad Sci U S A. 2020;117(52):32996–33004.
  • Sorokin DY, Muyzer G, Brinkhoff T, et al. Isolation and characterization of a novel facultatively alkaliphilic nitrobacter species, N. alkalicus sp. nov . Arch Microbiol. 1998;170(5):345–352.
  • Hagopian DS, Riley JG. A closer look at the bacteriology of nitrification. Aquacult Eng. 1998;18(4):223–244.
  • Navarro E, Fernandez MP, Grimont F, et al. Genomic heterogeneity of the genus nitrobacter. Microbiology Society. 1992; 42(4):554–560.
  • Bock E, Sundermeyer-Klinger H, Stackebrandt E. New facultative lithoautotrophic nitrite-oxidizing bacteria. Arch Microbiol. 1983; 136(4):281–284.
  • Bock E, Koops H-P, Möller UC, et al. A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov. Arch Microbiol. 1990;153(2):105–110.
  • Hunik JH, Meijer H, Tramper J. Kinetics of Nitrobacter agilis at extreme substrate, product and salt concentrations. Appl Microbiol Biotechnol. 1993;40(2–3):442–448.
  • Fu S-F, Wang F, Shi X-S, et al. Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure. Chem Eng J. 2016; 287:523–528.
  • Vadivelu VM, Yuan Z, Fux C, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched nitrobacter culture. Environ Sci Technol. 2006; 40(14):4442–4448.
  • Franck P, Sophie W, Elisabeth B, et al. First exploration of nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA. FEMS Microbiol Ecol. 2008;63(1):132–140.
  • Pester M, Maixner F, Berry D, et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing nitrospira. Environ Microbiol. 2014;16(10):3055–3071.
  • Li SN, Wang XJ, Zhou J, et al. Application of flow cytometry to enumerate small plankton. journal of lake sciences. Chinese. 2015;27(5):757–766.
  • Vanparys B, Spieck E, Heylen K, et al. The phylogeny of the genus nitrobacter based on comparative rep-PCR, 16S rRNA and nitrite oxidoreductase gene sequence analysis. Syst Appl Microbiol. 2007;30(4):297–308.
  • Navada S, Vadstein O, Tveten AK, et al. Influence of rate of salinity increase on nitrifying biofilms. J Cleaner Prod. 2019;238:117835.
  • Zhang SF, Wang YY, He WT, et al. Impacts of temperature and nitrifying community on nitrification kinetics in a moving-bed biofilm reactor treating polluted raw water. Chem Eng J. 2014;236:242–250.
  • Arthur H, Watson K. Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol. 1976;128(1):56–68.
  • Huang ZH, Gedalanga PB, Asvapathanagul P, et al. Influence of physicochemical and operational parameters on nitrobacter and nitrospira communities in an aerobic activated sludge bioreactor. Water Res. 2010;44(15):4351–4358.
  • Jimenez E, Gimenez B, Ruano MV, et al. Effect of pH and nitrite concentration on nitrite oxidation rate. Bioresour Technol. 2011;102(19):8741–8747.
  • Karin M, Eberhard B. Isolation and partial characterization of inner and outer membrane fractions of Nitrobacter hamburgensis. FEMS Microbiol Lett. 2010;2:137–141.
  • Zhang X, Wang CF, Yu X, et al. Effects of pH on the kinetics of NOB and functional genes. China Environ Sci. 2020;40(4):1537–1544. Chinese.
  • Gao Y, Wang X, Li J, et al. Effect of aquaculture salinity on nitrification and microbial community in moving bed bioreactors with immobilized microbial granules. Bioresour Technol. 2020;297:122427.
  • Paul S, Bag SK, Das S, et al. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol. 2008;9(4):R70.
  • Soppa J. From genomes to function: haloarchaea as model organisms. Microbiology (Reading). 2006;152(Pt 3):585–590.
  • Ilgrande C, Leroy B, Wattiez R, et al. Metabolic and proteomic responses to salinity in synthetic nitrifying communities of nitrosomonas spp. and nitrobacter spp. Front Microbiol. 2018;9:2914.
  • Moussa MS, Sumanasekera DU, Ibrahim SH, et al. Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers. Water Res. 2006;40(7):1377–1388.
  • Boon B, Laudelout H. Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem J. 1962; 85(3):440–447.
  • Andrews JH, Harris RF. R-selection and k-selection and microbial ecology. Adv Microbial Ecol. 1986;9:99–147.
  • Grunditz C, Dalhammar G. Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter. Water Res. 2001; 35(2):433–440.
  • Lin WT, Zhu YN. Analysis of microbial diversity of nitrifying bacteria by terminal restriction fragment length polymorphism. Chin J Biotechnol. 2010;26(4):483–488.
  • Kuhn DD, Drahos DD, Marsh L, et al. Evaluation of nitrifying bacteria product to improve nitrification efficacy in recirculating aquaculture systems. Aquacult Eng. 2010;43(2):78–82.
  • Ren J, Lin WT, Shen YJ, et al. Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design. Bioresour Technol. 2008;99(17):7923–7927.
  • Chen Z, Chang ZQ, Qiao L, et al. Effect of hydraulic retention time on solid-phase denitrification reactor in recirculating aquaculture system. Aquaculture. 2021;543:736928.
  • Yedong G, Liang G, Meng YS, et al. Heterotrophic denitrification strategy for marine recirculating aquaculture wastewater treatment using mariculture solid wastes fermentation liquid as carbon source: optimization of COD/NO3−–N ratio and hydraulic retention time. Bioresour Technol. 2020;304(122982). DOI: 10.1016/j.biortech.2020.122982.
  • Li Q. The microbial structure and the selection of attachment growth mode of nitrifying bacteria in nitrification process. Liaoning Urban Rural Environ Sci Technol. 2000;20(6):34–38. Chinese.
  • Sclenickova K, Kolousek D, Pecenka M, et al. Application of zeolite filters in fish breeding recirculation systems and their effect on nitrifying bacteria. Aquaculture. 2020; 516(734605)
  • Forrest D, Delatolla R, Kennedy K. Carrier effects on tertiary nitrifying moving bed biofilm reactor: an examination of performance, biofilm and biologically produced solids. Environ Technol. 2016;37(6):662–671.