1,081
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimization, reconstruction and heterologous expression of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri in Escherichia coli and its successive hydroxylation of toluene and benzene

, , , , , , , , , & show all
Pages 1632-1642 | Received 14 Jun 2021, Accepted 17 Oct 2021, Published online: 16 Nov 2021

References

  • Rajamanickam R, Kaliyamoorthi K, Ramachandran N, et al. Batch biodegradation of toluene by mixed microbial consortia and its kinetics. Int Biodeter Biodegr. 2017;119:282–288.
  • Jacob JH, Irshaid FI. Toluene biodegradation by novel bacteria isolated from polluted soil surrounding car body repair and spray painting workshops. JEP. 2015;6(12):1417–1429.
  • Morales P, Cáceres M, Scott F, et al. Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani. Appl Microbiol Biotechnol. 2017;101(17):6765–6777.
  • Barro R, Regueiro J, Llompart M, et al. Analysis of industrial contaminants in indoor air: Part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. J Chromatogr A. 2009;1216(3):540–566.
  • Cao B, Nagarajan K, Loh KC . Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol. 2009;85(2):207–228.
  • Bolden AL, Kwiatkowski CF, Colborn T. New look at BTEX: are ambient levels a problem? Environ Sci Technol. 2015;49(9):5261–5276.
  • Blasi B, Tafer H, Kustor C, et al. Genomic and transcriptomic analysis of the toluene degrading black yeast Cladophialophora immunda. Sci Rep. 2017;7(1):11436.
  • Ortega-Gonzalez DK, Zaragoza D, Aguirre-Garrido J, et al. Degradation of benzene, toluene, and xylene isomers by a bacterial consortium obtained from rhizosphere soil of Cyperus sp. grown in a petroleum-contaminated area. Folia Microbiol. 2013;58(6):569–577.
  • Kuppardt A, Kleinsteuber S, Vogt C, et al. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer. Microb Ecol. 2014;68(2):222–234.
  • Olapade OA, Ronk AJ. Isolation, characterization and community diversity of indigenous putative toluene-degrading bacterial populations with catechol-2,3-dioxygenase genes in contaminated soils. Microb Ecol. 2015;69(1):59–65.
  • Yoshikawa M, Zhang M, Toyota K. Biodegradation of volatile organic compounds and their effects on biodegradability under co-existing conditions. Microbes Environ. 2017;32(3):188–200.
  • Fulekar MH, Koul Sheetal TNG, Darshana N. Bioremediation of toluene using microbial consortium obtained from industrial effluent. Int J Curr Microbiol App Sci. 2017;6(2):552–558.
  • Estevez E, Veiga MC, Kennes C. Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biotechnol. 2005;32(1):33–37.
  • Jayamani I, Cupples AM. Effect of isobutanol on toluene biodegradation in nitrate amended, sulfate amended and methanogenic enrichment microcosms. Biodegradation. 2013;24(5):657–663.
  • Yoshikawa M, Zhang M, Kurisu F, et al. Bacterial degraders of coexisting dichloromethane, benzene, and toluene, identified by stable-isotope probing. Water Air Soil Pollut. 2017;228(11):418.
  • Yoshikawa M, Zhang M, Toyota K. Integrated anaerobic-aerobic biodegradation of multiple contaminants including chlorinated ethylenes, benzene, toluene, and dichloromethane. Water Air Soil Pollut. 2017;228(1):25.
  • Fishman A, Tao Y, Wood TK. Physiological relevance of successive hydroxylations of toluene by toluenepara-monooxygenase of Ralstonia pickettii PKO1. Biocatal Biotransform. 2004;22(4):283–289.
  • Bertoni G, Martino M, Galli E, et al. Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol. 1998;64(10):3626–3632.
  • Bertoni G, Bolognese F, Galli E, et al. Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl Environ Microbiol. 1996;62(10):3704–3711.
  • Chauhan S, Barbieri P, Wood T. Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol. 1998;64(8):3023–3024.
  • Ryoo D, Shim H, Canada K, et al. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol. 2000;18(7):775–778.
  • Cafaro V, Scognamiglio R, Viggiani A, et al. Expression and purification of the recombinant subunits of toluene/o-xylene monooxygenase and reconstitution of the active complex. Eur J Biochem. 2002;269(22):5689–5699.
  • Kahlon RS. 2016. Biodegradation and bioremediation of organic chemical pollutants by Pseudomonas. In Kahlon RS, editor. Pseudomonas: Molecular and Applied Biology. Berlin: Springer. pp. 343–417.
  • Wells T, Jr., Ragauskas AJ . Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnol. 2012;30(12):627–637.
  • Abu Laban N, Tan B, Dao A, et al. Draft genome sequence of uncultivated toluene-degrading Desulfobulbaceae bacterium Tol-SR, obtained by stable isotope probing using [13C6]toluene. Genome Announc. 2015;3:e01423-14.
  • Bouhajja E, McGuire M, Liles MR, et al. Identification of novel toluene monooxygenase genes in a hydrocarbon-polluted sediment using sequence- and function-based screening of metagenomic libraries. Appl Microbiol Biotechnol. 2017;101(2):797–808.
  • Tancsics A, Farkas M, Horvath B, et al . Genome analysis provides insights into microaerobic toluene-degradation pathway of Zoogloea oleivorans Buc(T). Arch Microbiol. 2020;202(2):421–426.
  • Wang B, Xu J, Gao J, et al. Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules. J Hazard Mater. 2019;373:29–38.
  • Wang B, Gao J, Xu J, et al. Optimization and reconstruction of two new complete degradation pathways for 3-chlorocatechol and 4-chlorocatechol in Escherichia coli. J Hazard Mater. 2021;419:126428.
  • Xiong A, Yao Q, Peng R, et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 2004;32(12):e98–e98.
  • Peng R, Xiong A, Yao Q. A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Appl Microbiol Biotechnol. 2006;73(1):234–240.
  • Liang AD, Lippard SJ. Component interactions and electron transfer in toluene/o-xylene monooxygenase. Biochemistry. 2014;53(47):7368–7375.
  • Bailey LJ, Elsen NL, Pierce BS, et al. Soluble expression and purification of the oxidoreductase component of toluene 4-monooxygenase. Protein Expr Purif. 2008;57(1):9–16.
  • Shim H, St Y. Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J Bacteriol. 1999;67:99–112.
  • Fishman A, Tao Y, Wood TK. Toluene 3-monooxygenase of Ralstonia pickettii PKO1 is a para-hydroxylating enzyme. J Bacteriol. 2004;186(10):3117–3123.
  • Newman LM, Wackett LP. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry. 1995;34(43):14066–14076.
  • Whited GM, Gibson DT. Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J Bacteriol. 1991;173(9):3010–3016.
  • Rui L, Reardon KF, Wood TK. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl Microbiol Biotechnol. 2005;66(4):422–429.
  • Fishman A, Tao Y, Bentley WE, et al. Protein engineering of toluene 4-monooxygenase of Pseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene. Biotechnol Bioeng. 2004;87(6):779–790.
  • Cafaro V, Notomista E, Capasso P, et al. Regiospecificity of two multicomponent monooxygenases from Pseudomonas stutzeri OX1: molecular basis for catabolic adaptation of this microorganism to methylated aromatic compounds. Appl Environ Microbiol. 2005;71(8):4736–4743.
  • Ma F, Shi SN, Sun TH, et al. Biotransformation of benzene and toluene to catechols by phenol hydroxylase from Arthrobacter sp. W1. Appl Microbiol Biotechnol. 2013;97(11):5097–5103.
  • Notomista E, Cafaro V, Bozza G, et al. Molecular determinants of the regioselectivity of toluene/o-xylene monooxygenase from Pseudomonas sp. strain OX1. Appl Environ Microbiol. 2009;75(3):823–836.
  • Notomista E, Scognamiglio R, Troncone L, et al. Tuning the specificity of the recombinant multicomponent toluene o-xylene monooxygenase from Pseudomonas sp. strain OX1 for the biosynthesis of tyrosol from 2-phenylethanol. Appl Environ Microbiol. 2011;77(15):5428–5437.
  • Tao Y, Fishman A, Bentley WE, et al. Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Appl Environ Microbiol. 2004;70(7):3814–3820.
  • Cafaro V, Izzo V, Scognamiglio R, et al. Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Appl Environ Microbiol. 2004;70(4):2211–2219.
  • Nolan LC, O’Connor KE. Use of Pseudomonas mendocina, or recombinant Escherichia coli cells expressing toluene-4-monooxygenase, and a cell-free tyrosinase for the synthesis of 4-fluorocatechol from fluorobenzene. Biotechnol Lett. 2007;29(7):1045–1050.
  • Bordel S, Munoz R, Diaz LF, et al. New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl Microbiol Biotechnol. 2007;74(4):857–866.