676
Views
0
CrossRef citations to date
0
Altmetric
Articles

Identification of AhATL1 interaction proteins participating in drought stress memory in peanut

, , &
Pages 1745-1757 | Received 13 Jul 2021, Accepted 29 Nov 2021, Published online: 12 Jan 2022

References

  • Hilker M, Schmülling T. Stress priming, memory, and signalling in plants. Plant Cell Environ. 2019;42(3):753–761.
  • Avramova Z. Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J. 2015;83(1):149–159.
  • Ding Y, Fromm M, Avramova Z. Multiple exposures to drought ‘train’ transcriptional responses in arabidopsis. Nat Commun. 2012;3(1):9.
  • Liu N, Avramova Z. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in arabidopsis. Epigenet. Chromatin. 2016;9(1):8.
  • Ding Y, Liu N, Virlouvet L, et al. Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol. 2013;13(1):229.
  • Tabassum T, Farooq M, Ahmad R, et al. Terminal drought and seed priming improves drought tolerance in wheat. Physiol Mol Biol Plants. 2018;24(5):845–856.
  • Li P, Yang H, Wang L, et al. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front Genet. 2019;10:55.
  • Chen RQ, Shu W, Ge K, et al. Effect on growth and expressions of stress-related genes in peanut under drought stress training. Plant Physiol J. 2017;53(10):1921–1927.
  • Kim YK, Chae S, Oh NL, et al. Recurrent drought conditions enhance the induction of drought stress memory genes in Glycine max L. Front. Genet. 2020;11:1248.
  • Virlouvet L, Avenson TJ, Du Q, et al. Dehydration stress memory: gene networks linked to physiological responses during repeated stresses of zea mays. Front Plant Sci. 2018;9:1058.
  • Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18(1):1–11.
  • Friedrich T, Faivre L, Bäurle I, et al. Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ. 2019;42(3):762–770.
  • Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157(1):95–109.
  • Iwasaki M, Paszkowski J. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci USA. 2014;111(23):8547–8552.
  • Zheng X, Chen L, Xia H, et al. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep. 2017;7(1):39843.
  • Osakabe Y, Osakabe K, Shinozaki K, et al. Response of plants to water stress. Front Plant Sci. 2014;5:86.
  • Lim CW, Baek W, Jung J, et al. Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci. 2015;16(7):15251–15270.
  • Schroeder JI, Allen GJ, Hugouvieux V, et al. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:627–658.
  • Li JL, Han L, Su YH, et al. Functional identification of ammopiptanthus mongolicus anion channel AmSLAC1 involved in drought induced stomata closure. Plant Physiol Biochem. 2019;143:340–350.
  • Vahisalu T, Kollist H, Wang YF, et al. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature. 2008;452(7186):487–491.
  • Geiger D, Scherzer S, Mumm P, et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA. 2010;107(17):8023–8028.
  • Huang SG, Waadt R, Nuhkat M, et al. Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure. New Phytol. 2019;224(1):177–187.
  • Geiger D, Scherzer S, Mumm P, et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA. 2009;106(50):21425–21430.
  • Lee SC, Lan WZ, Buchanan BB, et al. A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA. 2009;106(50):21419–21424.
  • Lee KH, Piao HL, Kim HY, et al. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell. 2006;126(6):1109–1120.
  • Hu B, Cao J, Ge K, et al. The site of water stress governs the pattern of ABA synthesis and transport in peanut. Sci Rep. 2016;6:32143.
  • Seo M, Koshiba T. Transport of ABA from the site of biosynthesis to the site of action. J Plant Res. 2011;124(4):501–507.
  • Sauter A, Davies WJ, Hartung W. The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot. 2001;52(363):1991–1997.
  • Matsuda S, Funabiki A, Furukawa K, et al. Genome-wide analysis and expression profiling of half-size ABC protein subgroup G in rice in response to abiotic stress and phytohormone treatments. Mol Genet Genom. 2012;287(10):819–835.
  • Nguyen VNT, Moon S, Jung K-H. Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. J Plant Physiol. 2014;171(14):1276–1288.
  • Zhang XD, Zhao KX, Yang ZM. Identification of genomic ATP binding cassette (ABC) transporter genes and cd-responsive ABCs in brassica napus. Gene. 2018;664:139–151.
  • Suh SJ, Wang Y-F, Frelet A, et al. The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in arabidopsis guard cells. J Biol Chem. 2007;282(3):1916–1924.
  • Kuromori T, Sugimoto E, Shinozaki K. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J. 2011;67(5):885–894.
  • Matsuda S, Takano S, Sato M, et al. Rice stomatal closure requires guard cell plasma membrane ATP-binding cassette transporter RCN1/OsABCG5. Mol Plant. 2016;9(3):417–427.
  • Zhang ZM, Wan SB, Dai LX, et al. Estimating and screening of drought resistance indexes of peanut. Chin J Plant Ecol. 2011;35(1):100–109.
  • Qin FF, Ci DW. Previous drought alters physiological responses to subsequent drought stress in peanut seedlings. Acta Ecol Sin. 2017;37(24):8486–8498.
  • Ge K, Liu X, Li XY, et al. Isolation of an ABA transporter-like 1 gene from Arachis hypogaea that affects ABA import and reduces ABA sensitivity in arabidopsis. Front Plant Sci. 2017;8:1150.
  • Qin M, Li X, Tang S, et al. Expression of AhATL1, an ABA transport factor gene from peanut, is affected by altered memory gene expression patterns and increased tolerance to drought stress in arabidopsis. IJMS. 2021;22(7):3398.
  • Liu S, Li M, Su L, et al. Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress. Sci Rep. 2016;6(9):1–11. McFarlane HE, Shin JJ, Bird DA, et al. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. The Plant Cell. 2010;223066:–3075.
  • Luo B, Xue XY, Hu WL, et al. An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol. 2007;48(12):1790–1802.
  • Negi J, Matsuda O, Nagasawa T, et al. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature. 2008;452(7186):483–486.
  • Acharya BR, Jeon BW, Zhang W, et al. Open stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol. 2013;200(4):1049–1063.
  • Munemasa S, Hauser F, Park J, et al. Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr Opin Plant Biol. 2015;28:154–162.
  • Hubbard KE, Nishimura N, Hitomi K, et al. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev. 2010;24(16):1695–1708.
  • Umezawa T, Sugiyama N, Mizoguchi M, et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in arabidopsis. Proc Natl Acad Sci USA. 2009;106(41):17588–17593.
  • Emami H, Kempken F. PRECOCIOUS1 (POCO1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana. Plant J. 2019;100(2):265–278.
  • Müller HM, Schäfer N, Bauer H, et al. The desert plant phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. New Phytol. 2017;216(1):ww150–162.
  • Qi GN, Yao FY, Ren HM, et al. The S-type anion channel ZmSLAC1 plays essential roles in stomatal closure by mediating nitrate efflux in maize. Plant Cell Physiol. 2018;59(3):614–623.
  • Nicotra AB, Davidson A. Adaptive phenotypic plasticity and plant water use. Funct Plant Biol. 2010;37(2):117–127.
  • Cavanagh AP, Kubien DS. Can phenotypic plasticity in rubisco performance contribute to photosynthetic acclimation. Photosynth Res. 2014;119(1-2):203–214.
  • Bruce TJA, Matthes MC, Napier JA, et al. Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci. 2007;173(6):603–608.
  • Ding Y, Virlouvet L, Liu N, et al. Dehydration stress memory genes of zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol. 2014;14(1):1–15.
  • Fleta-Soriano E, Munné-Bosch S. Stress memory and the inevitable effects of drought: a physiological perspective. Front Plant Sci. 2016;7:143.