743
Views
0
CrossRef citations to date
0
Altmetric
Articles

Expression analysis of MINA53: correlation with aberrantly expressed mRNAs and pathological features in non-small lung cancer

, , , , , , , , & show all
Pages 1791-1798 | Received 26 Aug 2021, Accepted 10 Dec 2021, Published online: 08 Jan 2022

References

  • Wild CP, Weiderpass E, Stewart BW. World cancer report: cancer research for cancer prevention. Cancer Control. 2020;199:512.
  • Kashima J, Kitadai R, Okuma Y. Molecular and morphological profiling of lung cancer: a foundation for “next-generation” pathologists and oncologists. Cancers. 2019;11(5):599.
  • Tian LJ, Wu YP, Wang D, et al. Upregulation of long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is associated with cisplatin resistance in non-small cell lung cancer (NSCLC) by downregulating microRNA-144-3p. Med Sci Monit. 2019;25:8095–8104.
  • Zhang Q, Thakur C, Shi J, et al. New discoveries of mdig in the epigenetic regulation of cancers. Semin Cancer Biol. 2019;57:27–35.
  • Field RW, Withers BL. Occupational and environmental causes of lung cancer. Clin Chest Med. 2012;33(4):681–703.
  • Shi J, Thakur C, Zhao Y, et al. Pathological and prognostic indications of the mdig gene in human lung cancer. Cell physiol biochem. 2021;55(Suppl 2):13.
  • Zhang Y, Lu Y, Yuan B-Z, et al. The human mineral dust-induced gene, mdig, is a cell growth regulating gene associated with lung cancer. Oncogene. 2005;24(31):4873–4882. https://www.nature.com/articles/1208668
  • Teye K, Tsuneoka M, Arima N, et al. Increased expression of a myc target gene Mina53 in human Colon cancer. Am J Pathol. 2004;164(1):205–216. http://dx.doi.org/10.1016/S0002-9440(10)63111-2
  • Zhou H, Geng F, Chen Y, et al. The mineral dust-induced gene, mdig, regulates angiogenesis and lymphangiogenesis in lung adenocarcinoma by modulating the expression of VEGF-A/C/D via EGFR and HIF-1α signaling. Oncol Rep. 2021;45(5):110001.
  • Zhang Q, Thakur C, Fu Y, et al. Mdig promotes oncogenic gene expression through antagonizing repressive histone methylation markers. Theranostics. 2020;10(2):602–614. http://www.thno.org//creativecommons.org/licenses/by/4.0/
  • Thakur C, Lu Y, Sun J, et al. Increased expression of mdig predicts poorer survival of the breast cancer patients. Gene. 2014;535(2):218–224.
  • Huang MY, Xuan F, Liu W, et al. MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation. Oncogene. 2017;36(3):387–396.
  • Tsuneoka M, Fujita H, Arima N, et al. Mina53 as a potential prognostic factor for esophageal squamous cell carcinoma. Clin Cancer Res. 2004;10(21):7347–7356.
  • Teye K, Arima N, Nakamura Y, et al. Expression of myc target gene mina53 in subtypes of human lymphoma. Oncol Rep. 2007;18(4):841–848.
  • Ishizaki H, Yano H, Tsuneoka M, et al. Overexpression of the myc target gene Mina53 in advanced renal cell carcinoma. Pathol Int. 2007;57(10):672–680.
  • Ogasawara S, Komuta M, Nakashima O, et al. Accelerated expression of a myc target gene Mina53 in aggressive hepatocellular carcinoma. Hepatol Res. 2010;40(3):330–336.
  • Tan XP, Dong WG, Zhang Q, et al. Potential effects of Mina53 on tumor growth in human pancreatic cancer. Cell Biochem Biophys. 2014;69(3):619–625.
  • Wu K, Li L, Thakur C, et al. Proteomic characterization of the world trade center dust-activated mdig and c-myc signaling circuit linked to multiple myeloma. Sci Rep. 2016;6(1):36305–36312.
  • Liu H, Guo J, Liu J, et al. Expression of EphA2 and EphrinA1 and its significance in gastric carcinoma. Chinese J Clin Oncol. 2008;35(10):573–577.
  • Thakur C, Chen F. Current understanding of mdig/MINA in human cancers. Genes and Cancer. 2015;6(7–8):1–15. www.genesandcancer.com/article/73/text/
  • Lian SL, Mihi B, Koyanagi M, et al. A SNP uncoupling mina expression from the TGFβ signaling pathway. Immun Inflamm Dis. 2018;6(1):58–71.
  • Hemmers S, Mowen KA. T(H)2 bias: mina tips the balance. Nat Immunol. 2009;10(8):806–808. https://www.nature.com/articles/ni0809-806
  • Thakur C, Chen B, Li L, et al. Loss of mdig expression enhances DNA and histone methylation and metastasis of aggressive breast cancer. Signal Transduct Target Ther. 2018;3(1):25.
  • Yu M, Sun J, Thakur C, et al. Paradoxical roles of mineral dust induced gene on cell proliferation and migration/invasion. PLoS One. 2014;9(2):e87998.
  • Komiya K, Sueoka-Aragane N, Sato A, et al. Mina53, a novel c-Myc target gene, is frequently expressed in lung cancers and exerts oncogenic property in NIH/3T3 cells. J Cancer Res Clin Oncol. 2010;136(3):465–473.
  • Aziz N, Hong YH, Jo MK, et al. Molecular signatures of JMJD10/MINA53 in gastric cancer. Cancers. 2020;12(5):1141. https://www.mdpi.com/2072-6694/12/5/1141/htm
  • Lu Y, Chang Q, Zhang Y, et al. Lung cancer-associated JmjC domain protein mdig suppresses formation of tri-methyl lysine 9 of histone H3. Cell Cycle. 2009;8(13):2101–2109.
  • Thakur C, Wolfarth M, Sun J, et al. Oncoprotein mdig contributes to silica-induced pulmonary fibrosis by altering balance between Th17 and treg T cells. Oncotarget. 2015;6(6):3722–3736.
  • Kosaka T, Yatabe Y, Endoh H, et al. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 2004;64(24):8919–8923.
  • Brabender J, Danenberg KD, Metzger R, et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin Cancer Res. 2001;7(7):1850–1855.
  • Ma D, Guo D, Li W, et al. Mdig, a lung cancer-associated gene, regulates cell cycle progression through p27(KIP1). Tumour Biol. 2015;36(9):6909–6917.
  • Komiya K, Sueoka-Aragane N, Sato A, et al. Expression of Mina53, a novel c-Myc target gene, is a favorable prognostic marker in early stage lung cancer. Lung Cancer. 2010;69(2):232–238. http://dx.doi.org/10.1016/j.lungcan.2009.10.010
  • Sun J, Yu M, Lu Y, et al. Carcinogenic metalloid arsenic induces expression of mdig oncogene through JNK and STAT3 activation. Cancer Lett. 2014;346(2):257–263.
  • Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809.
  • Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234–248.
  • Huynh J, Chand A, Gough D, et al. Therapeutically exploiting STAT3 activity in cancer - using tissue repair as a road map. Nat Rev Cancer. 2019;19(2):82–96.
  • Geng F, Jiang Z, Song X, et al. Mdig suppresses epithelial-mesenchymal transition and inhibits the invasion and metastasis of non‑small cell lung cancer via regulating GSK-3β/β-catenin signaling. Int J Oncol. 2017;51(6):1898–1908.
  • Wang W, Lu Y, Stemmer PM, et al. The proteomic investigation reveals interaction of mdig protein with the machinery of DNA double-strand break repair. Oncotarget. 2015;6(29):28269–28281.
  • Xuan F, Huang M, Zhao E, et al. MINA53 deficiency leads to glioblastoma cell apoptosis via inducing DNA replication stress and diminishing DNA damage response. Cell Death Dis. 2018;9(11):1062.
  • Kuratomi K, Yano H, Tsuneoka M, et al. Immunohistochemical expression of Mina53 and Ki67 proteins in human primary gingival squamous cell carcinoma. Kurume Med J. 2006;53(3–4):71–78.
  • M H, W D, Epigenetic WR. Dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol. 2009;10(8):526–537. https://pubmed.ncbi.nlm.nih.gov/19603040/
  • Kappes F, Waldmann T, Mathew V, et al. The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev. 2011;25(7):673–678.