1,019
Views
0
CrossRef citations to date
0
Altmetric
Articles

Structure and features of the complete chloroplast genome of Salix triandroides (Salicaceae)

, , , , , & show all
Pages 148-158 | Received 02 Jul 2021, Accepted 22 Dec 2021, Published online: 20 Apr 2022

References

  • Fang ZF, Zhao SD, Skvortsov AK. Salicaceae. In: Wu Z, Raven PH, editors. Flora of China. Vol. 4. St. Louis (MO): Missouri Botanical Garden Press; 1999. p. 139–274.
  • Argus GW. Salix. In: Flora of North America Editorial Committee, editors. Vol. 7: Magnoliophyta: Salicaceae to Brassicaceae. New York: Oxford University Press; 2010. p. 23–51.
  • Wu J, Nyman T, Wang D, et al. Phylogeny of Salix subgenus Salix s.l. (Salicaceae): delimitation, biogeography, and reticulate evolution. BMC Evol Biol. 2015;15:31.
  • Gullberg U. Towards making willows pilot species for coppicing production. For Chron. 1993;69(6):721–726.
  • Lindegaard KN, Barker J. Breeding willows for biomass. Asp Appl Biol. 1997;49:155–162.
  • Dos Santos Utmazian MN, Wieshammer G, Vega R, et al. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut. 2007;148(1):155–165.
  • Kuzovkina YA, Volk TA. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology. Ecol Eng. 2009;35(8):1178–1189.
  • Marmiroli M, Pietrini F, Maestri E, et al. Growth, physiological and molecular traits in salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol. 2011;31(12):1319–1334.
  • Li Y, Li X, Zhang C, et al. Change trend of Salix ligneous plants in the dongting lake wetlands and its reasons. Wetl Sci. 2014;12:646–649. (in Chinese).
  • Yao X, Ma F, Li Y, et al. Effect of water cadmium concentration and water level on the growth performance of Salix triandroides cuttings. Environ Sci Pollut Res Int. 2018;25(8):8002–8011.
  • Ding X, Zou J, Li Y, et al. Acclimation of Salix triandroides cuttings to incomplete submergence is reduced by low light. Aquat Ecol. 2017;51(2):321–330.
  • Jansen RK, Cai Z, Raubeson LA, et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A. 2007;104(49):19369–19374.
  • Wu Z, Gui S, Quan Z, et al. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots. BMC Plant Biol. 2014;14:289.
  • AbdullahWaseem S, Mirza B, et al. Comparative analyses of chloroplast genomes of Theobroma cacao and Theobroma grandiflorum. Biologia. 2020;75:761–771.
  • Moore MJ, Soltis PS, Bell CD, et al. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci U S A. 2010;107(10):4623–4628.
  • Devine AL, Daniell H. Chloropalst genetic engineering. In: Moller S, editor. Plastids. London: Blackwell Publisher; 2004. p. 283–320.
  • Chen J, Huang Y, Brachi B, et al. Genome-wide analysis of cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nat Commun. 2019;10(1):5230.
  • He L, Jia K, Zhang R, et al. Chromosome-scale assembly of the genome of Salix dunnii reveals a male-heterogametic sex determination system on chromosome 7. Mol Ecol Resour. 2021;21(6):1966–1982.
  • Doyle JJ, Doyle JL. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–15.
  • Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45(4):e18.
  • Tillich M, Lehwark P, Pellizzer T, et al. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45(W1):W6–W11.
  • Shi L, Chen H, Jiang M, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 2019;47(W1):W65–W73.
  • Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:686–689.
  • Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549.
  • Mower JP. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009;37:253–259.
  • Kurtz S, Choudhuri JV, Ohlebusch E, et al. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29(22):4633–4642.
  • Brudno M, Do CB, Cooper GM, et al. Lagan and multi-Lagan: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 2003;13(4):721–731.
  • Amiryousefi A, Hyvönen J, Poczai P. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics. 2018;34(17):3030–3031.
  • Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–1452.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780.
  • Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274.
  • Oresic M, Shalloway D. Specific correlations between relative synonymous codon usage and protein secondary structure. J Mol Biol. 1998;281(1):31–48. 1998
  • Wang Y, Zhao B, Lu Z, et al. The complete chloroplast genome provides insight into the polymorphism and adaptive evolution of Garcinia paucinervis. Biotechnol Biotec Eq. 2021;35(1):377–391.
  • Liu H, Yu Y, Deng Y, et al. The chloroplast genome of Lilium henrici: genome structure and comparative analysis. Molecules. 2018;23(6):1276.
  • Azuma T, Kajita T, Yokoyama J, et al. Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. Am J Bot. 2000;87(1):67–75.
  • Lauron-Moreau A, Pitre FE, Argus GW, et al. Phylogenetic relationships of American willows (Salix L., Salicaceae). PLoS One. 2015;10(9):e0138963.
  • Argus GW. Salix (Salicaceae) distribution maps and a synopsis of their classification in North America, North of Mexico. Harv Pap Bot. 2007;12(2):335–368.2.0.CO;2]
  • Sharma KR, Kilemwab AM, Singh NB, et al. Variability in wood properties of promising willow clones. Int J Lignoc Product. 2014;1:82–92.
  • Chen Z, Grover CE, Li P, et al. Molecular evolution of the plastid genome during diversification of the cotton genus. Mol Phylogenet Evol. 2017;112:268–276.
  • Tyagi S, Jung J-A, Kim JS, et al. A comparative analysis of the complete chloroplast genomes of three Chrysanthemum boreale strains. PeerJ. 2020;8:e9448.
  • Ding Y, Fang Y, Guo L, et al. Phylogenic study of lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions. PeerJ. 2017;5:e4186.
  • Dong W, Liu J, Yu J, et al. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One. 2012;7(4):e35071.
  • Chen J, Sun H, Wen J, et al. Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications. Taxon. 2010;59(1):29–37.
  • Hardig TM, Anttila CK, Brunsfeld SJ. A phylogenetic analysis of Salix (Salicaceae) based on matK and ribosomal DNA sequence data. J Bot. 2010;2010:1–12.
  • Meng D, Xiaomei Z, Wenzhen K, et al. Detecting useful genetic markers and reconstructing the phylogeny of an important medicinal resource plant, Artemisia selengensis, based on chloroplast genomics. PLoS One. 2019;14(2):e0211340.
  • Shen X, Guo S, Yin Y, et al. Complete chloroplast genome sequence and phylogenetic analysis of aster tataricus. Molecules. 2018;23(10):2426.
  • Weng M, Blazier JC, Govindu M, et al. Reconstruction of the ancestral plastid genome in geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol. 2014;31(3):645–659.
  • Zhang J, Yuan H, Li Y, et al. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz. Hortic Res. 2020;7(1):201.
  • Hörandl E, Florineth F, Hadacek F. Weiden in österreich und angrenzenden gebieten [Willows in Austria and adjacent regions]. 2nd ed. Vienna (Austria): University of Agriculture; 2012. p. 164.