1,619
Views
3
CrossRef citations to date
0
Altmetric
Reviews

State of the art and applications in nanostructured biocatalysis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 118-134 | Received 17 Nov 2021, Accepted 14 Mar 2022, Published online: 23 Mar 2022

References

  • Albery WJ, Knowles JR. Efficiency and evolution of enzyme catalysis. Angew Chem Int Ed Engl. 1977;16(5):285–293.
  • Grigoras AG. Catalase immobilization – a review. Biochem Eng J. 2017;117:1–20.
  • Liu D-M, Dong C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Bioch. 2020;92:464–475.
  • Rasheed T, Nabeel F, Bilal M. Self-assembly of artificial peroxidase mimics from alternating copolymers with chromogenic and biocatalyst potentialities. J Ind Eng Chem. 2019;78:315–323.
  • Bilal M, Rasheed T, Zhao Y, et al. “Smart" chemistry and its application in peroxidase immobilization using different support materials. Int J Biol Macromol. 2018;119:278–290.
  • Romero-Fernandez M, Paradisi F. Protein immobilization technology for flow biocatalysis. Curr Opin Chem Biol. 2020;55:1–8.
  • Hu Y, Dai L, Liu D, et al. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase. Green Chem. 2018;20(19):4500–4506.
  • Ladole MR, Pokale PB, Patil SS, et al. Laccase immobilized peroxidase mimicking magnetic metal organic frameworks for industrial dye degradation. Bioresour Technol. 2020;317:124035.
  • Zhu YT, Ren XY, Liu YM, et al. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays. Mat Sci Eng C-Mater. 2014;38:278–285.
  • Liu DM, Chen J, Shi YP. Tyrosinase immobilization on aminated magnetic nanoparticles by physical adsorption combined with covalent crosslinking with improved catalytic activity, reusability and storage stability. Anal Chim Acta. 2018;1006:90–98.
  • Liu DM, Chen J, Shi Y-P. Advances on methods and easy separated support materials for enzymes immobilization. TrAC-Trend Anal Chem. 2018;102:332–342.
  • Cipolatti EP, Valério A, Henriques RO, et al. Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Adv. 2016;6(106):104675–104692.
  • Ramakrishna TRB, Nalder TD, Yang W, et al. Controlling enzyme function through immobilisation on graphene, graphene derivatives and other two dimensional nanomaterials. J Mater Chem B. 2018;6(20):3200–3218.
  • Hong T, Liu W, Li M, et al. Recent advances in the fabrication and application of nanomaterial-based enzymatic microsystems in chemical and biological sciences. Anal Chim Acta. 2019;1067:31–47.
  • An J, Li G, Zhang Y, et al. Recent advances in enzyme-nanostructure biocatalysts with enhanced activity. Catalysts. 2020;10(3):338.
  • Zhang K, Yang W, Liu Y, et al. Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J Mol Struct. 2020;1220:128769.
  • Hong T, Chi C, Ji Y. Pepsin-modified chiral monolithic column for affinity capillary electrochromatography. J Sep Sci. 2014;37(22):3377–3383.
  • Xu S, Mo R, Jin C, et al. Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography. J Pharmaceut Biomed. 2017;140:190–198.
  • Ortega-Liebana MC, Bonet-Aleta J, Hueso JL, et al. Gold-based nanoparticles on amino-functionalized meso-porous silica supports as nanozymes for glucose oxidation. Catalysts. 2020;10(3):333.
  • Rafiei S, Tangestaninejad S, Horcajada P, et al. Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor. Chem Eng J. 2018;334:1233–1241.
  • Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–4412.
  • Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–6093.
  • Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–1076.
  • Manea F, Houillon FB, Pasquato L, et al. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew Chem Int Ed Engl. 2004;43(45):6165–6169.
  • Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–583.
  • Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–2200.
  • Wang Y, He C, Li W, et al. Catalytic performance of oligonucleotide-templated Pt nanozyme evaluated by laccase substrates. Catal Lett. 2017;147(8):2144–2152.
  • Chen M, Wang Z, Shu J, et al. Mimicking a natural enzyme system: cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome c. Inorg Chem. 2017;56(16):9400–9403.
  • Ren H, Liu X, Yan L, et al. Ocean green tide derived hierarchical porous carbon with bi-enzyme mimic activities and their application for sensitive colorimetric and fluorescent biosensing. Sensors Actuat B-Chem. 2020;312:127979.
  • Ma L, Jiang F, Fan X, et al. Metal-organic-framework-engineered enzyme-mimetic catalysts. Adv Mater. 2020;32(49):2003065.
  • Sardaremelli S, Hasanzadeh M, Seidi F. Enzymatic recognition of hydrogen peroxide (H2O2) in human plasma samples using HRP immobilized on the surface of poly(arginine-toluidine blue)-modified Fe3O4 nanoparticles modified polydopamine; a novel biosensor. J Mol Recognit. 2021;34(11):e2928.
  • Cui J, Ren S, Lin T, et al. Shielding effects of Fe3+-tannic acid nanocoatings for immobilized enzyme on magnetic Fe3O4@silica core shell nanosphere. Chem Eng J. 2018;343:629–637.
  • Suo H, Xu L, Xue Y, et al. Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: improvement of catalytic performance. Carbohyd Polym. 2020;234:115914.
  • Liu J, Zhao W, Zhang L, et al. Synthesis of substituted 2H-chromenes catalyzed by lipase immobilized on magnetic multiwalled carbon nanotubes. Biotechnol Appl Bioc. 2021;68(2):411–416.
  • Shi J, Zhang S, Deng Q, et al. A versatile biocatalytic nano-platform based on Fe3O4-filled and zirconia shrunk holey carbon nanotubes. Chem Eng J. 2020;402:125737.
  • Saikia K, Vishnu D, Rathankumar AK, et al. Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin. J. Air Waste Manage. 2020;70(12):1252–1259.
  • Zhang Y, Li X, Li D, et al. A laccase based biosensor on Au NPs-MoS2 modified glassy carbon electrode for catechol detection. Colloid Surface B. 2020;186:110683.
  • Luo L, Zhou X, Pan Y, et al. A simple and sensitive flow injection chemiluminescence immunoassay for chloramphenicol based on gold nanoparticle-loaded enzyme. Luminescence. 2020;35(6):877–884.
  • Chronopoulou L, Scaramuzzo FA, Fioravanti R, et al. Noble metal nanoparticle-based networks as a new platform for lipase immobilization. Int J Biol Macromol. 2020;146:790–797.
  • Wang H, Li S, Li J, et al. Immobilized polyphenol oxidase: preparation, optimization and oxidation of phenolic compounds. Int J Biol Macromol. 2020;160:233–244.
  • Bounegru AV, Apetrei C. Development of a novel electrochemical biosensor based on carbon nanofibers-gold nanoparticles-tyrosinase for the detection of ferulic acid in cosmetics. Sensors-Basel. 2020;20(23):6724.
  • Karimi Alavijeh M, Meyer AS, Gras SL, et al. Improving β-galactosidase-catalyzed transglycosylation yields by cross-linked layer-by-layer enzyme immobilization. ACS Sustain Chem Eng. 2020;8(43):16205–16216.
  • Elias N, Wahab RA, Chandren S, et al. Structure and properties of lipase activated by cellulose-silica polyethersulfone membrane for production of pentyl valerate. Carbohyd Polym. 2020;245:116549.
  • Jia B, Liu C, Qi X. Selective production of ethyl levulinate from levulinic acid by lipase-immobilized mesoporous silica nanoflowers composite. Fuel Process Technol. 2020;210:106578.
  • Wu JQ, Xu XM, Wang DL, et al. Immobilization of phospholipase D on macroporous SiO2/cationic polymer nano-composited support for the highly efficient synthesis of phosphatidylserine. Enzyme Microb Tech. 2020;142:109696.
  • Ariaeenejad S, Jokar F, Hadian P, et al. An efficient nano-biocatalyst for lignocellulosic biomass hydrolysis: xylanase immobilization on organically modified biogenic mesoporous silica nanoparticles. Int J Biol Macromol. 2020;164:3462–3473.
  • Chen J, Sun B, Sun C, et al. Immobilization of lipase AYS on UiO-66-NH2 met-al-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Sep Purif Technol. 2020;251:117398.
  • Zhu F, Xu W, Li X, et al. Lipase immobilization on UiO-66/poly(vinylidene fluoride) hybrid membranes and active catalysis in the vegetable oil hydrolysis. New J Chem. 2020;44(34):14379–14388.
  • Yuan X, Liu Y, Cao F, et al. Immobilization of lipase onto metal–organic frameworks for enantioselective hydrolysis and transesterification. AIChE J. 2020;66(9):e16292.
  • Guo M, Chi J, Zhang C, et al. A simple and sensitive sensor for lactose based on Cascade reactions in au nanoclusters and enzymes co-encapsulated metal-organic frameworks. Food Chem. 2021;339:127863.
  • Li X, Feng Q, Lu K, et al. Encapsulating enzyme into metal-organic framework during in-situ growth on cellulose acetate nanofibers as self-powered glucose biosensor. Biosens Bioelectron. 2021;171:112690.
  • Li S-F, Zhai X-J, Zhang C, et al. Enzyme immobilization in highly ordered macro–microporous metal–organic frameworks for rapid biodegradation of hazardous dyes. Inorg Chem Front. 2020;7(17):3146–3153.
  • Farmakes J, Schuster I, Overby A, et al. Enzyme immobilization on graphite oxide (GO) surface via one-pot synthesis of GO/metal-organic framework composites for large-substrate biocatalysis. ACS Appl Mater Interfaces. 2020;12(20):23119–23126.
  • Huang S, Chen G, Ye N, et al. Iron-mineralization-induced mesoporous metal-organic frameworks enable high-efficiency synergistic catalysis of natural/nanomimic enzymes. ACS Appl Mater Interfaces. 2020;12(51):57343–57351.
  • Zhu L, Shen B, Song Z, et al. Permeabilized TreS-expressing Bacillus subtilis cells decorated with glucose isomerase and a shell of ZIF-8 as a reusable biocatalyst for the coproduction of trehalose and fructose. J Agric Food Chem. 2020;68(15):4464–4472.
  • Xu J, Sun J, Wang Y, et al. Application of iron magnetic nanoparticles in protein immobilization. Molecules. 2014;19(8):11465–11486.
  • Kiran; Rathour RK, Bhatia RK, Rana DS, et al. Fabrication of thermostable and reusable nanobiocatalyst for dye decolourization by immobilization of lignin peroxidase on graphene oxide functionalized MnFe2O4 superpara-magnetic nanoparticles. Bioresour Technol. 2020;317:124020.
  • Darwesh OM, Ali SS, Matter IA, et al. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. Methods Enzymol. 2020;630:481–502.
  • Zhou Z, Hartmann M. Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev. 2013;42(9):3894–3912.
  • Jo SM, Jiang S, Graf R, et al. Aqueous core and hollow silica nanocapsules for confined enzyme modules. Nanoscale. 2020;12(47):24266–24272.
  • Mukundan S, Melo JS, Sen D, et al. Enhancement in β-galactosidase activity of Streptococcus lactis cells by entrapping in microcapsules comprising of correlated silica nanoparticles. Colloids Surf B Biointerfaces. 2020;195:111245.
  • Huang S, Kou X, Shen J, et al. “Armor-plating" enzymes with metal-organic frameworks (MOFs). Angew Chem Int Ed. 2020;59(23):8786–8798.
  • Liang J, Gao S, Liu J, et al. Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis. Angew Chem Int Ed Engl. 2021;60(10):5421–5428.
  • Chong Y, Huang J, Xu X, et al. Hyaluronic acid-modified Au-Ag alloy nanoparticles for radiation/nanozyme/Ag+ multimodal synergistically enhanced cancer therapy. Bioconjugate Chem. 2020;31(7):1756–1765.
  • Yang R, Fu S, Li R, et al. Facile engineering of silk fibroin capped AuPt bimetallic nanozyme responsive to tumor microenvironmental factors for enhanced nanocatalytic therapy. Theranostics. 2021;11(1):107–116.
  • Xu Z, Sun P, Zhang J, et al. High-efficiency platinum–carbon nanozyme for photodynamic and catalytic synergistic tumor therapy. Chem Eng J. 2020;399:125797.
  • Wu L, Zhou M, Wang Y, et al. Nanozyme and aptamer-based immunosorbent assay for aflatoxin B1. J Hazard Mater. 2020;399:123154.
  • Gupta PK, Son SE, Seong GH. One-pot synthesized citric acid-modified bimetallic PtNi hollow nanospheres as peroxidase mimics for colorimetric detection of human serum albumin. Mat Sci Eng C-Mater. 2020;116:111231.
  • Gökçal B, Kip Ç, Tuncel A. One-pot, direct glucose detection in human whole blood without using a dilution factor by a magnetic nanozyme with dual enzymatic activity. J Alloy Compd. 2020;843:156012.
  • Long L, Liu J, Lu K, et al. Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis. J Nanobiotechnol. 2018;16:46.
  • Wu J, Qin K, Yuan D, et al. Rational design of Au@Pt multibranched nanostructures as bi-functional nanozymes. ACS Appl Mater Interfaces. 2018;10(15):12954–12959.
  • Tian Y, Chen Y, Chen M, et al. Peroxidase-like Au@Pt nanozyme as an integrated nanosensor for Ag+ detection by LSPR spectroscopy. Talanta. 2021;221:121627.
  • Du C, Gao Y, Chen H, et al. A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. J Mater Chem A. 2020;8(33):16994–17001.
  • Mohammad M, Ahmadpoor F, Shojaosadati SA. Mussel-inspired magnetic nanoflowers as an effective nanozyme and antimicrobial agent for biosensing and catalytic reduction of organic dyes. ACS Omega. 2020;5(30):18766–18777.
  • Gallay P, Eguilaz M, Rivas G. Designing electrochemical interfaces based on nanohybrids of avidin functionalized-carbon nanotubes and ruthenium nanoparticles as peroxidase-like nanozyme with supramolecular recognition properties for site-specific anchoring of biotinylated residues. Biosens Bioelectron. 2020;148:111764.
  • Hao C, Qu A, Xu L, et al. Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating parkinson’s disease. J Am Chem Soc. 2019;141(2):1091–1099.
  • Wang F, Zhang Y, Liu Z, et al. A mesoporous encapsulated nanozyme for decontaminating two kinds of wastewater and avoiding secondary pollution. Nanoscale. 2020;12(27):14465–14471.
  • Zhou Y, Wei W, Cui F, et al. Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells. Chem Sci. 2020;11(41):11, 11344–11350.
  • Zhang R, Lu N, Zhang J, et al. Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosens Bioelectron. 2020;150:111881.
  • Gong F, Yang N, Wang Y, et al. Oxygen-deficient bimetallic oxide FeWOx nanosheets as peroxidase-like nanozyme for sensing cancer via photoacoustic imaging. Small. 2020;16(46):2003496.
  • Tian Z, Liu H, Guo Z, et al. A pH-responsive polymer-CeO2 hybrid to catalytically generate oxidative stress for tumor therapy. Small. 2020;16(47):2004654.
  • Yıldırım D, Gökçal B, Büber E, et al. A new nanozyme with peroxidase-like activity for simultaneous phosphoprotein isolation and detection based on metal oxide affinity chromatography: monodisperse-porous cerium oxide microspheres. Chem Eng J. 2021;403:126357.
  • Tian L, Zhang Y, Wang L, et al. Ratiometric dual signal-enhancing-based electrochemical biosensor for ultrasensitive kanamycin detection. ACS Appl Mater Interfaces. 2020;12(47):52713–52720.
  • Jin R, Zhao L, Yan X, et al. Lab in hydrogel portable kit: on-site monitoring of oxalate. Biosens Bioelectron. 2020;167:112457.
  • Liu J, Gao J, Zhang A, et al . Carbon nanocage-based nanozyme as an endogenous H2O2-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer. Nanoscale. 2020;12(42):21674–21686.
  • Zhu X, Liu Y, Yuan G, et al. In situ fabrication of MS@MnO2 hybrid as nanozymes for enhancing ROS-mediated breast cancer therapy. Nanoscale. 2020;12(43):22317–22329.
  • Fang J, Wang H, Bao X, et al. Nanodiamond as efficient peroxidase mimic against periodontal bacterial infection. Carbon. 2020;169:370–381.
  • Heo NS, Song HP, Lee SM, et al. Rosette-shaped graphitic carbon nitride acts as a peroxidase mimic in a wide pH range for fluorescence-based determination of glucose with glucose oxidase. Microchim Acta. 2020;187:286.
  • Zhang P, Sun D, Cho A, et al. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired Cascade photocatalysis. Nat Commun. 2019;10(1):940.
  • Zeng G, Duan M, Xu Y, et al. Platinum (II)-doped graphitic carbon nitride with enhanced peroxidase-like activity for detection of glucose and H2O2. Spectrochim Acta A Mol Biomol Spectrosc. 2020;241:118649.
  • Zhao X, Li S, Yu X, et al . In situ growth of CeO2 on g-C3N4 nanosheets toward a spherical g-C3N4/CeO2 nanozyme with enhanced peroxidase-like catalysis: a selective colorimetric analysis strategy for mercury(II). Nanoscale. 2020;12(41):21440–21446.
  • Wang L, Gao F, Wang A, et al. Defect-rich adhesive molybdenum disulfide/rGo vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv Mater. 2020;32(48):2005423.
  • Fan K, Xi J, Fan L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9(1):1440.
  • Ibarbia A, Sánchez-Abella L, Lezama L, et al. Graphene quantum dot-based hydrogels for photocatalytic degradation of organic dyes. Appl Surf Sci. 2020;527:146937.
  • Liu X, Liu Z, Dong K, et al. Tumor-activatable ultrasmall nanozyme generator for enhanced penetration and deep catalytic therapy. Biomaterials. 2020;258:120263.
  • Hormozi Jangi SR, Akhond M. Synthesis and characterization of a novel metal-organic framework called nanosized electroactive quasi-coral-340 (NEQC-340) and its application for constructing a reusable nanozyme-based sensor for selective and sensitive glutathione quantification. Microchem J. 2020;158:105328.
  • Xu Z, Long LL, Chen YQ, et al. A nanozyme-linked immunosorbent assay based on metal-organic frameworks (MOFs) for sensitive detection of aflatoxin B1. Food Chem. 2021;338:128039.
  • Li M, Chen J, Wu W, et al. Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J Am Chem Soc. 2020;142(36):15569–15574.
  • Li X, Li X, Li D, et al. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by Cascade ­primer exchange reaction and MOF@Pt@MOF nanozyme. Biosens Bioelectron. 2020;168:112554.
  • Son SE, Gupta PK, Hur W, et al. Determination of glycated albumin using a Prussian blue nanozyme-based boronate affinity sandwich assay. Anal Chim Acta. 2020;1134:41–49.
  • Zhang R, Zhou Y, Yan X, et al. Advances in chiral nanozymes: a review. Microchim Acta. 2019;186:782.
  • Tao X, Wang X, Liu B, et al. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens Bioelectron. 2020;168:112537.
  • Meng Y, Li W, Pan X, et al. Applications of nanozymes in the environment. Environ Sci Nano. 2020;7(5):1305–1318.
  • Bian H, Nguyen NT, Yoo J, et al. Forming a highly active, homogeneously alloyed AuPt co-catalyst decoration on TiO2 nanotubes directly during anodic growth. ACS Appl Mater Interfaces. 2018;10(21):18220–18226.
  • Sun H, Zhao A, Gao N, et al. Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed. 2015;54(24):7176–7180.
  • Wang H, Li P, Yu D, et al. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018;18(6):3344–3351.