793
Views
0
CrossRef citations to date
0
Altmetric
Articles

Two QTL for kernel number per spike identified from durum wheat

, , , &
Pages 135-141 | Received 17 Nov 2021, Accepted 14 Mar 2022, Published online: 23 Mar 2022

References

  • Gupta PK, Rustgi S, Kumar N. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome. 2006;49(6):565–571.
  • Zhang D, Hao C, Wang L, et al. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta. 2012;236(5):1507–1517.
  • Börner A, Schumann E, Fürste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet. 2002;105(6-7):921–936.
  • Cao P, Liang X, Zhao H, et al. Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). Planta. 2019;250(6):1967–1981.
  • Cui F, Zhao C, Ding A, et al. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet. 2014;127(3):659–675.
  • Deng S, Wu X, Wu Y, et al. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet. 2011;122(2):281–289.
  • Huang XQ, Kempf H, Ganal MW, et al. Advanced backcross QTL analysis in progenies derived from a cross between a german elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet. 2004;109(5):933–943.
  • Jia H, Wan H, Yang S, et al. Genetic dissection of yield-related traits in a recombinant inbred line ­population created using a key breeding parent in china’s wheat breeding. Theor Appl Genet. 2013;126(8):2123–2139.
  • Kirigwi FM, Van Ginkel M, Brown-Guedira G, et al. Markers associated with a QTL for grain yield in wheat under drought. Mol Breeding. 2007;20(4):401–413.
  • Kuang CH, Zhao XF, Yang K, et al. Mapping and characterization of major QTL for spike traits in common wheat. Physiol Mol Biol Plants. 2020;26(6):1295–1307.
  • Lin Y, Jiang X, Hu H, et al. QTL mapping for grain number per spikelet in wheat using a high-density genetic map. The Crop Journal. 2021;9(5):1108–1114.
  • Liu J, Xu Z, Fan X, et al. A genome-wide association study of wheat spike related traits in China. Front Plant Sci. 2018;9:1584.
  • Narasimhamoorthy B, Gill BS, Fritz AK, et al. Advanced backcross QTL analysis of a hard winter wheat x synthetic wheat population. Theor Appl Genet. 2006;112(5):787–796.
  • Onyemaobi I, Ayalew H, Liu H, et al. Identification and validation of a major chromosome region for high grain number per spike under meiotic stage water stress in wheat (Triticum aestivum L.). PLoS One. 2018;13(3):e0194075.
  • Shi W, Hao C, Zhang Y, et al. A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Front Plant Sci. 2017;8:1412.
  • Zhang H, Chen J, Li R, et al. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). The Crop Journal. 2016;4(3):220–228.
  • Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007;316(5833):1862–1866.
  • Zhang Z, Han H, Liu W, et al. Deletion mapping and verification of an enhanced-grain number per spike locus from the 6PL chromosome arm of agropyron cristatum in common wheat. Theor Appl Genet. 2019b;132(10):2815–2827.
  • Li M, Dong L, Li B, et al. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 2020;228(3):1027–1037.
  • Xie W, Nevo E. Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica. 2008;164(3):603–614.
  • Yin H, Fang X, Li P, et al. Genetic mapping of a novel powdery mildew resistance gene in wild emmer wheat from “Evolution Canyon” in Mt. Carmel Israel. Theor Appl Genet. 2021;134(3):909–921.
  • Yu J, Zhao Y, Ding M, et al. Wild emmer chromosome arm substitution lines: useful resources for wheat genetic study and breeding. Crop Sci. 2020;60(4):1761–1769.
  • Fu D, Uauy C, Distelfeld A, et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science. 2009;323(5919):1357–1360.
  • Klymiuk V, Yaniv E, Huang L, et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun. 2018;9(1):3735.
  • Liu Z, Sun Q, Ni Z, et al. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica. 2002;123(1):21–29.
  • Blanco A, Gadaleta A, Cenci A, et al. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet. 2008;117(1):135–142.
  • Hua W, Liu Z, Zhu J, et al. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet. 2009;119(2):223–230.
  • Zhang D, Zhu K, Dong L, et al. Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. The Crop Journal. 2019a;7(6):761–770.
  • Chen L, Li H, Liu Y, et al. Genetic identification of a major, novel and stably expressed QTL for effective tiller number from tetraploid wheat. Biotechnol Biotechnol Equip. 2021;35(1):1538–1545.
  • Zhu T, Wang L, Rodriguez JC, et al. Improved genome sequence of wild emmer wheat zavitan with the aid of optical maps. G3. G3 (Bethesda). 2019;9(3):619–624.
  • Maccaferri M, Harris NS, Twardziok SO, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet. 2019;51(5):885–895.
  • Zhu T, Wang L, Rimbert H, et al. Optical maps refine the bread wheat Triticum aestivum cv chinese spring genome assembly. Plant J. 2021;107(1):303–314.
  • Ma S, Wang M, Wu J, et al. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant. 2021;14(12):1965–1968.
  • Fan X, Cui F, Zhao C, et al. QTLs for flag leaf size and their influence on yield-related traits in wheat. Triticum aestivum L.). Mol Breed. 2015;35:24.
  • Ma J, Tu Y, Zhu J, et al. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet. 2020;133(1):297–315.
  • Tu Y, Liu H, Liu J, et al. QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. Theor Appl Genet. 2021;134(1):261–278.