2,625
Views
0
CrossRef citations to date
0
Altmetric
Articles

Identification and expression analysis of capsaicin biosynthesis pathway genes at genome level in Capsicum chinense

, , , , , , , & show all
Pages 232-244 | Received 22 Sep 2021, Accepted 26 Apr 2022, Published online: 31 May 2022

References

  • Unnikrishnan MC, Kuttan R. Tumour reducing and anticarcinogenic activity of selected spices. Cancer Lett. 1990;51(1):85–89.
  • Surh YJ, Lee RC, Park KK, et al. Chemoprotective effects of capsaicin and diallyl sulfide against mutagenesis or tumorigenesis by vinyl carbamate and N-nitrosodimethylamine. Carcinogenesis. 1995;16(10):2467–2471.
  • Kim C-S, Kawada T, Kim B-S, et al. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal. 2003;15(3):299–306.
  • Díaz-Laviada I. Effect of capsaicin on prostate cancer cells. Future Oncol. 2010;6(10):1545–1550.
  • Ahn S-J, Badenes-Pérez FR, Heckel DG. A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species. J Insect Physiol. 2011;57(9):1212–1219.
  • Tewksbury JJ, Reagan KM, Machnicki NJ, et al. Evolutionary ecology of pungency in wild chilies. Proc Natl Acad Sci USA. 2008;105(33):11808–11811.
  • Wang YA. Wounding effects of capsaicin, a new irritant riot control agent: an overview. J Int Pharm Res. 2011;(6):432–437.
  • Thresh LT. Isolation of capsaicin. Pharm J. 1846;6:941–942.
  • Fujiwake H, Suzuki T, Iwai K. Capsaicinoid formation in the protoplast from the placenta of capsicum fruits. Agric Biol Chem. 1982;46(10):2591–2592.
  • Bennett DJ, Kirby GW. Constitution and biosynthesis of capsaicin. J Chem Soc C. 1968;442–446.
  • Mazourek M, Pujar A, Borovsky Y, et al. A dynamic interface for capsaicinoid systems biology. Plant Physiol. 2009;150(4):1806–1821.
  • Zhang Z-X, Zhao S-N, Liu G-F, et al. Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper. Sci Rep. 2016;6(1):34121.
  • Zhang Y, Butelli E, Alseekh S, et al. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun. 2015;6(1):8635.
  • Liu X, Li Y, Zhao D-G, cloning and expression analysis of RksAGL gene in seedless chestnut rose (Rosa kweichonensis var. sterilis). Genomics Appl Biol. 2015;34(03):579–586.
  • Hachiya T, Inaba J, Wakazaki M, et al. Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nat Commun. 2021;12(1):4944.
  • Han K, Lee H-Y, Ro N-Y, et al. QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in capsicum. Plant Biotechnol J. 2018;16(9):1546–1558.
  • del Rosario Abraham-Juárez M, del Carmen Rocha-Granados M, López MG, et al. Virus-induced silencing of comt, pAmt and kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta. 2008;227(3):681–695.
  • Koeda S, Sato K, Saito H, et al. Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in capsicum. Theor Appl Genet. 2019;132(1):65–80.
  • Kim S, Park M, Yeom S-I, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in capsicum species. Nat Genet. 2014;46(3):270–278.
  • Ogawa K, Murota K, Shimura H, et al. Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. BMC Plant Biol. 2015;15(1):93.
  • Kirii E, Goto T, Yoshida Y, et al. Non-pungency in a japanese chili pepper landrace (Capsicum annuum) is caused by a novel loss-of-function Pun1 allele. The Hortic J. 2017;86(1):61–69.
  • Park Y-J, Nishikawa T, Minami M, et al. A low-pungency S3212 genotype of capsicum frutescens caused by a mutation in the putative aminotransferase (p-AMT) gene. Mol Genet Genomics. 2015;290(6):2217–2224.
  • Tanaka Y, Nakashima F, Kirii E, et al. Difference in capsaicinoid biosynthesis gene expression in the pericarp reveals elevation of capsaicinoid contents in chili peppers (Capsicum chinense). Plant Cell Rep. 2017;36(2):267–279.
  • Ni M, Ju LX, Lei X, et al. Cloning and sequence analysis of Cinnamoyl-CoA reductase 1(CCR1) gene in Capsicum chinense jacquin. Mol Plant Breed. 2019;17(06):1763–1770.
  • Lei X, Ju LX, Zhao CZ, et al. Cloning and plant expression vector construction of CcCAD1 gene in capsicum chinense. Mol Plant Breed. 2020;18(16):5373–5379.
  • Arce-Rodríguez ML, Ochoa-Alejo N. An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis. Plant Physiol. 2017;174(3):1359–1370.
  • Zhu Z, Sun B, Cai W, et al. Natural variations in the MYB transcription factor MYB31 determine the evolution of extremely pungent peppers. New Phytol. 2019;223(2):922–938.
  • Sun B, Zhou X, Chen C, et al. Coexpression network analysis reveals an MYB transcriptional activator involved in capsaicinoid biosynthesis in hot peppers. Hortic Res. 2020;7(1):162.
  • Lopez-Ortiz C, Peña-Garcia Y, Natarajan P, et al. The ankyrin repeat gene family in capsicum spp: genome-wide survey, characterization and gene expression profile. Sci Rep. 2020;10(1):4044.
  • Guo Q, Liu H, Zhang X, et al. Genome-wide identification and expression analysis of the carotenoid ­metabolic pathway genes in pepper (Capsicum ­annuum L.). Biotechnol Biotechnol Equip. 2020;34(1):1134–1149.
  • Arce-Rodríguez ML, Martínez O, Ochoa-Alejo N. Genome-Wide identification and analysis of the MYB transcription factor gene family in chili pepper (Capsicum spp.). IJMS. 2021;22(5):2229.
  • Zou XX, Ma YQ, Dai XZ, et al. Spread and industry development of pepper in China. Acta Hortic Sin. 2020;47(9):1715–1726.
  • Wang J, Wang J. Reseach progress on ornamental pepper. Northern Hortic. 2017;(16):186–190.
  • Popescu GDA, Scheau C, Badarau IA, et al. The effects of capsaicin on gastrointestinal cancers. Molecules. 2020;26(1):94.
  • Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202.
  • Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549.
  • Kim S, Park J, Yeom S-I, et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol. 2017;18(1):210.
  • Dubey M, Jaiswal V, Rawoof A, et al. Identification of genes involved in fruit development/ripening in capsicum and development of functional markers. Genomics. 2019;111(6):1913–1922.
  • Maere S, De Bodt S, Raes J, et al. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA. 2005;102(15):5454–5459.
  • Chothia C, Gough J, Vogel C, et al. Evolution of the protein repertoire. Science. 2003;300(5626):1701–1703.
  • Kang W-H, Sim YM, Koo N, et al. Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Sci Data. 2020;7(1):17.
  • Liu Y, Liu F, Zou XX. Research progress of capsaicinoids biosynthesis and related regulatory genes. Hunan Agric Sci. 2020;(09):109–111.
  • Liljegren SJ, Ditta GS, Eshed Y, et al. SHATTERPROOF MADS-box genes control seed dispersal in arabidopsis. Nature. 2000;404(6779):766–770.
  • Arce-Rodríguez ML, Ochoa-Alejo N. Silencing AT3 gene reduces the expression of pAmt, BCAT, kas, and acl genes involved in capsaicinoid biosynthesis in chili pepper fruits. Biol Plant. 2015;59(3):477–484.
  • Gai JT, Chen ZX, Wang P. Identification and sequence analysis of PAL gene family in solanaceae. Chin J Trop Crops. 2015;36(03):474–479.
  • Jones DH. Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochemistry. 1984;23(7):1349–1359.
  • Ou LJ, Lü JH, Tang BQ. A KASP marker closely linked to the content of capsaicin and its application. Mol Plant Breed. 2019;17(24):8158–8162.