1,737
Views
2
CrossRef citations to date
0
Altmetric
Articles

Transcriptome data mining towards characterization of single nucleotide polymorphisms (SNPs) controlling salinity tolerance in bread wheat

, , &
Pages 389-400 | Received 31 Jan 2022, Accepted 19 May 2022, Published online: 07 Jun 2022

References

  • Tesfaye K. Climate change in the hottest wheat regions. Nat Food. 2021;2(1):8–9.
  • Kizilgeci F, Yildirim M, Islam MS, et al. Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability. 2021;13(7):3725.
  • EL Sabagh A, Islam MS, Skalicky M, et al. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Front Agron. 2021;3:661932.
  • Zhu J-K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–273.
  • Hafez EM, Omara AED, Alhumaydhi FA, et al. Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiol Plant. 2021;172(2):587–602.
  • Goyal E, Amit SK, Singh RS, et al. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia local. Sci Rep. 2016;6:1–14.
  • Hu P, Zheng Q, Luo Q, et al. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol. 2021;21(1):1–20.
  • Zimmerman SJ, Aldridge CL, Oyler-McCance SJ. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics. 2020;21(1):1–16.
  • Wilkinson PA, Winfield MO, Barker GLA, et al. CerealsDB 3.0: expansion of resources and data integration. BMC Bioinformatics. 2016;17(1):1–9.
  • Grewal S, Hubbart-Edwards S, Yang C, et al . Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosome-specific KASP genotyping assays . Plant Biotechnol J. 2020;18(3):743–755.
  • Henry IM, Nagalakshmi U, Lieberman MC, et al. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell. 2014;26(4):1382–1397.
  • Luo Q, Zheng Q, Hu P, et al. Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theor Appl Genet. 2021;134(1):171–189.
  • Ariel O, Brouard J-S, Marete A, et al. Genome-wide association analysis identified both RNA-seq and DNA variants associated to paratuberculosis in Canadian Holstein cattle “in vitro” experimentally infected macrophages. BMC Genomics. 2021;22(1):15.
  • Bakhtiarizadeh MR, Alamouti AA. RNA-Seq based genetic variant discovery provides new insights into controlling fat deposition in the tail of sheep. Sci Rep. 2020;10(1):1–13.
  • Jehl F, Degalez F, Bernard M, et al. RNA-Seq data for reliable SNP detection and genotype calling: interest for coding variant characterization and cis-regulation analysis by allele-specific expression in livestock species. Front Genet. 2021;12:655707.
  • Lam S, Zeidan J, Miglior F, et al. Development and comparison of RNA-sequencing pipelines for more accurate SNP identification: practical example of functional SNP detection associated with feed efficiency in Nellore beef cattle. BMC Genomics. 2020;21(1):1–17.
  • Okada M, Yoshida K, Nishijima R, et al. RNA-seq analysis reveals considerable genetic diversity and provides genetic markers saturating all chromosomes in the diploid wild wheat relative Aegilops umbellulata. BMC Plant Biol. 2018;18(1):1–13.
  • Muñoz-Espinoza C, Di Genova A, Sánchez A, et al. Identification of SNPs and InDels associated with berry size in table grapes integrating genetic and transcriptomic approaches. BMC Plant Biol. 2020;20(1):1–21.
  • Cánovas A, Rincon G, Islas-Trejo A, et al. SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm Genome. 2010;21(11-12):592–598.
  • Zhao Y, Wang K, Wang W, et al. A high-throughput SNP discovery strategy for RNA-seq data. BMC Genomics. 2019;20(1):1–10.
  • Brouard J-S, Schenkel F, Marete A, et al. The GATK joint genotyping workflow is appropriate for calling variants in RNA-seq experiments. J Anim Sci Biotechnol. 2019;10(1):1–6.
  • Kim J, Manivannan A, Kim D-S, et al. Transcriptome sequencing assisted discovery and computational analysis of novel SNPs associated with flowering in Raphanus sativus in-bred lines for marker-assisted backcross breeding. Hortic Res. 2019;6:120.
  • Amirbakhtiar N, Ismaili A, Ghaffari MR, et al. Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. PLoS One. 2019;14(3):e0213305.
  • Mahajan MM, Goyal E, Singh AK, et al. Shedding light on response of Triticum aestivum cv. Kharchia local roots to long-term salinity stress through transcriptome profiling. Plant Growth Regul. 2020;90(2):369–381.
  • Afgan E, Baker D, Batut B, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–W544.
  • Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. Babraham.ac.uk, 2022.
  • Ewels P, Magnusson M, Lundin S, et al. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–3048.
  • Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
  • Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–515.
  • Smedley D, Haider S, Durinck S, et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 2015;43(W1):W589–W598.
  • Cock PJA, Chilton JM, Grüning B, et al. NCBI BLAST + integrated into galaxy. GigaSci. 2015;4(1):39.
  • Cock PJA, Antao T, Chang JT, et al. Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25(11):1422–1423.
  • Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–2948.
  • Schoch CL, Ciufo S, Domrachev M, et al. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062.
  • Bailey TL, Williams N, Misleh C, et al. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006;34(Web Server issue):W369–W373.
  • Tanaka E, Bailey T, Grant CE, et al. Improved similarity scores for comparing motifs. Bioinformatics. 2011;27(12):1603–1609.
  • Fornes O, Castro-Mondragon JA, Khan A, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48(D1):D87–D92.
  • Zhang Y, Liu Z, Khan AA, et al. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Sci Rep. 2016;6:1–10.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359.
  • Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–W570.
  • Untergasser A, Cutcutache I, Koressaar T, et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.
  • Wangkumhang P, Chaichoompu K, Ngamphiw C, et al. WASP: a web-based allele-specific PCR assay designing tool for detecting SNPs and mutations. BMC Genomics. 2007;8(1):1-9.
  • Cotsaftis O, Plett D, Johnson AAT, et al. Root-Specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol Plant. 2011;4(1):25–41.
  • Li C, Tien H, Wen M, et al . Myo-inositol transport and metabolism participate in salt tolerance of halophyte ice plant seedlings. Physiol Plant. 2021;172(3):1619–1629.
  • Duan J, Zhang M, Zhang H, et al. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci. 2012;196:143–151.
  • Long W, Zou X, Zhang X. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage. PLos One. 2015;10(2):e0116217.
  • Munir S, Mumtaz MA, Ahiakpa JK, et al. Genome-wide analysis of myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics. 2020;21(1):1–15.
  • Lisko KA, Torres R, Harris RS, et al. Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol Plant. 2013;49(6):643–655.
  • Nepal N, Yactayo-Chang JP, Medina-Jiménez K, et al. Mechanisms underlying the enhanced biomass and abiotic stress tolerance phenotype of an Arabidopsis MIOX over-expresser. Plant Direct. 2019;3(9):e00165.
  • Wang H, Xiao X, Yang M, et al. Effects of salt stress on antioxidant defense system in the root of Kandelia candel. Bot Stud. 2014;55(1):1-7.
  • Siddique S, Endres S, Sobczak M, et al . Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots. New Phytol. 2014;201(2):476–485.
  • Nelson DE, Rammesmayer G, Bohnert HJ. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell. 1998;10(5):753–764.
  • Yousfi F-E, Makhloufi E, Marande W, et al. Comparative analysis of WRKY genes potentially involved in salt stress responses in Triticum turgidum L. ssp. durum. Front Plant Sci. 2016;7:2034.
  • Darawi MN, Ai-Vyrn C, Ramasamy K, et al. Allele-specific polymerase chain reaction for the detection of Alzheimer’s disease-related single nucleotide polymorphisms. BMC Med Genet. 2013;14(1):1–8.
  • Gaudet M, Fara A-G, Beritognolo I, et al. Allele-specific PCR in SNP genotyping. In: Methods in molecular biology, Anton A. Komar, editor. 2009. p. 415–424. Totowa, NJ: Humana Press.
  • Alok A, Kaur J, Tiwari S. Functional characterization of wheat myo-inositol oxygenase promoter under different abiotic stress conditions in Arabidopsis thaliana. Biotechnol Lett. 2020;42(10):2035–2047.