776
Views
0
CrossRef citations to date
0
Altmetric
Articles

Cloning, expression and functional analysis of the SOC1 homologous gene in pak choi (Brassica rapa ssp. Chinensis makino)

ORCID Icon, , , &
Pages 848-857 | Received 21 Jun 2022, Accepted 21 Sep 2022, Published online: 19 Oct 2022

References

  • Tang LL, Song YP, Li JK. Advances on the molecular mechanism of floral organ development. Acta Bot Boreal-Occident Sin. 2013;33(5):1063–1070.
  • Dornelas MC, Patreze CM, Angenent GC, et al. MADS: the missing link between identity and growth? Trends Plant Sci. 2011;16(2):89–97.
  • Onouchi H, Igeño MI, Périlleux C, et al. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among arabidopsis flowering-time genes. Plant Cell. 2000;12(6):885–900.
  • Xian DY, Jiang W, Zhao XY, et al. Molecular mechanism of flowering time control by flowering integration SOC1. China Veg. 2013;1(6):1–8.
  • Moon J, Suh SS, Lee H, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in arabidopsis. Plant J. 2003;35(5):613–623.
  • Lee H, Suh SS, Park E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in arabidopsis. Genes Dev. 2000;14(18):2366–2376.
  • Michaels SD, Ditta G, Gustafson BC, et al. AGL24 acts as a promoter of flowering in arabidopsis and is positively regulated by vernalization. Plant J. 2003;33(5):867–874.
  • Yu H, Xu Y, Tan EL, et al. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA. 2002;99(25):16336–16341.
  • Liu C, Chen H, Er HL, et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in arabidopsis. Development. 2008;135(8):1481–1491.
  • Lee J, Oh M, Park H, et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J. 2008;55(5):832–843.
  • Ma TF, Lin XC. Advanced research on SOC1/AGL20 genes in plants: a review. J Zhejiang A & F Univ. 2013;30(6):930–937.
  • Papaefthimiou D, Kapazoglou A, Tsaftaris AS. Cloning and characterization of SOC1 homologs in barley (hordeum vulgare) and their expression during seed development and in response to vernalization. Physiol Plant. 2012;146(1):71–85.
  • Na X, Jian B, Yao W, et al. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR of OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Plant Cell Rep. 2013;32(8):1219–1229.
  • Shi YC, Yang YY, Liu WQ. Cloning and expression of SOC1 gene in tobacco. Acta Tabacaria Sin. 2014;20(2):99–103.
  • Cui B, Wang JQ, Song CX, et al. Cloning and expression analysis of SOC1 gene from phalaenopsis. Mol Plant Breed. 2016;14(03):548–553.
  • Tyagi S, Sri T, Singh A, et al. SUPPRESSOR of OVEREXPRESSION of CONSTANS1 influences flowering time, lateral branching, oil quality, and seed yield in brassica juncea cv. Varuna. Funct Integr Genomics. 2019;19(1):43–60.
  • Cao JS, Yu XL, Ye WZ, et al. Functional analysis of a novel male fertility CYP86MF gene in chinese cabbage (brassica campestris L. ssp. Chinensis makino). Plant Cell Rep. 2006;24(12):715–723.
  • Huang L, Liu Y, Yu XL, et al. A polygalacturonase inhibitory protein gene (BcM19) expressed during pollen development in chinese cabbage-pak-choi. Mol Biol Rep. 2011;38(1):545–552.
  • Song HX, Ping AM, Sun MX, et al. Identification of genes related to floral organ development in pak choi by expression profiling. Genet Mol Res. 2017;16(1):1–14.
  • Song HX, Fu C, Yin LH, et al. Cloning and expression analysis of LEAFY homologue in pak choi (brassica rapa subsp chinensis). Biotechnol Biotechnol Equip. 2015;29(6):1035–1042.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods. 2001;25(4):402–408.
  • Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–743.
  • Kimura Y, Aoki S, Ando E, et al. A flowering integrator, SOC1, affects stomatal opening in Arabidopsis thaliana. Plant Cell Physiol. 2015;56(4):640–649.
  • Cui RF, Meng Z. Functional conservation and diversity of floral homeotic MADS -box genes in angiosperms. J Integr Plant Biol. 2007;24(1):31–41.
  • Sri T, Gupta B, Tyagi S, et al. Homelogs of brassica SOC1, a Central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters. Mol Phylogenet Evol. 2020;147:106777.
  • Ray JR. Subcellular localization of transiently expressed fluorescent fusion proteins. In: Colling DA, editor. Legume genomics: Methods in molecular biology. 16th ed. Totowa, New Jersey, USA: Humana Press; 2013. p. 227–259.
  • Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134(1):25–36.
  • Hong JK, Kim SY, Kim KS, et al. Overexpression of a brassica rapa MADS-box gene, BrAGL20, induces early flowering time phenotypes in brassica napus. Plant Biotechnol Rep. 2013;7(3):231–237.
  • Fu JX, Qi S, Yang LW, et al. Characterization of chrysanthemum ClSOC1-1, and ClSOC1-2, homologous genes of SOC1. Plant Mol Biol Rep. 2014;32(3):740–749.
  • Wang Q, Pu YY, Zhao YH, et al. Cloning and expression analysis on bolting related genes SVP and SOC1 in strong winterness brassica napus L. Jiangsu J Agric Sci. 2020;36(05):1088–1097.
  • Liu Z, Wu X, Cheng M, et al. Identification and functional characterization of SOC1-like genes in pyrus bretschneideri. Genomics. 2020;112(2):1622–1632.
  • Hou D, Li L, Ma T, et al. The SOC1-like gene BoMADS50 is associated with the flowering of bambusa oldhamii. Hortic Res. 2021;8(1):133.
  • Huang X. Cloning and expression characterization of bolting and flowering genes SVP and SOC1 from flowering Chinese cabbage [Dissertation]. Guangzhou (China): South China Agricultural University; 2017.
  • Song GQ, Chen Q. Overexpression of the MADS-box gene K-domain increases the yield potential of blueberry. Plant Sci. 2018;276:22–31.
  • Wang S, Beruto M, Xue J, et al. Molecular cloning and potential function prediction of homologous SOC1 genes in tree peony. Plant Cell Rep. 2015;34(8):1459–1471.
  • Jiang Y, Peng J, Zhu Y, et al. The role of EjSOC1s in flower initiation in eriobotrya japonica. Front Plant Sci. 2019;10:253.
  • Hassankhah A, Rahemi M, Ramshini H, et al. Flowering in persian walnut: patterns of gene expression during flower development. BMC Plant Biol. 2020;20(1):136.
  • Melzer S, Lens F, Gennen J, et al. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet. 2008;40(12):1489–1492.
  • Liu C, Xi W, Shen L, et al. Regulation of floral patterning by flowering time genes. Dev Cell. 2009;16(5):711–722.
  • Samach A, Onouchi H, Gold SE, et al. Distinct roles of CONSTANS target genes in reproductive development of arabidopsis. Science. 2000;288(5471):1613–1616.
  • Lei HJ, Yuan HZ, Liu Y, et al. Identification and characterization of FaSOC1, a homolog of SUPPRESSOR of OVEREXPRESSION of CONSTANS1 from strawberry. Gene. 2013;531(2):158–167.