1,127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Incidence of ancient variants associated with oncological diseases in modern populations

, , &
Pages 42-48 | Received 18 Jul 2022, Accepted 21 Nov 2022, Published online: 09 Jan 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Fornaciari G. Histology of ancient soft tissue tumors: a review. Int J Paleopathol. 2018;21:64–76.
  • Giuffra V, Ciranni R, Fornaciari G. I TUMORI MALIGNI NELL'ANTICO EGITTO E IN NUBIA’. Egitto e Vicino Oriente. 2004;27:81–93.
  • Strouhal E. Tumors in the remains of ancient Egyptians. Am J Phys Anthropol. 1976;45(3 pt. 2):613–620.
  • Minozzi S, Catalano P, Caldarini C, et al. Palaeopathology of human remains from the roman imperial age. Pathobiology. 2012;79(5):268–283.
  • Minozzi S, Lunardini A, Caldarini C, et al. Metastatic prostate carcinoma from imperial Rome (1st to 2nd centuries AD). Pathobiology. 2018;85(5–6):289–299.
  • Merczi M, Marcsik A, Bernert Z, et al. Skeletal metastatic carcinomas from the roman period (1st to 5th century AD) in Hungary. Pathobiology. 2014;81(2):100–111.
  • Marchetti A, Pellegrini S, Bevilacqua G, et al. K-RAS mutation in the tumour of ferrante I of Aragon, king of Naples. Lancet (London, England). 1996;347(9010):1272–1nil.
  • Feldman M, Hershkovitz I, Sklan EH, et al. Detection of a tumor suppressor gene variant predisposing to colorectal cancer in an 18th century Hungarian mummy. PLoS One. 2016;11(2):e0147217.
  • Allen Ancient DNA Resource. 2021. version 50.0. [Available from: https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data.
  • Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45(D1):D833–D839.
  • Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2012;13(2):135–145.
  • Deguilloux M-F, Leahy R, Pemonge M-H, et al. European neolithization and ancient DNA: an assessment. Evol Anthropol. 2012;21(1):24–37.
  • Ilardo M, Nielsen R. Human adaptation to extreme environmental conditions. Curr Opin Genet Dev. 2018;53:77–82.
  • Kariuki SN, Williams TN. Human genetics and malaria resistance. Hum Genet. 2020;139(6–7):801–811.
  • Anguita-Ruiz A, Aguilera CM, Gil Á. Genetics of lactose intolerance: an updated review and online interactive world maps of phenotype and genotype frequencies. Nutrients. 2020;12(9):2689.
  • Apata M, Pfeifer SP. Recent population genomic insights into the genetic basis of arsenic tolerance in humans: the difficulties of identifying positively selected loci in strongly bottlenecked populations. Heredity (Edinb). 2020;124(2):253–262.
  • Ang SO, Chen H, Gordeuk VR, et al. Endemic polycythemia in Russia: mutation in the VHL gene. Blood Cells Mol Dis. 2002;28(1):57–62.
  • Mallik N, Sharma P, Kaur Hira J, et al. Genetic basis of unexplained erythrocytosis in Indian patients. Eur J Haematol. 2019;103(2):124–130.
  • Pastore YD, Jelinek J, Ang S, et al. Mutations in the VHL gene in sporadic apparently congenital polycythemia. Blood. 2003;101(4):1591–1595.
  • Pastore Y, Jedlickova K, Guan Y, et al. Mutations of von Hippel-Lindau tumor-suppressor gene and congenital polycythemia. Am J Hum Genet. 2003;73(2):412–419.
  • Liu E, Percy MJ, Amos CI, et al. The worldwide distribution of the VHL 598C > T mutation indicates a single founding event. Blood. 2004;103(5):1937–1940.
  • Nordstrom-O'Brien M, van der Luijt RB, van Rooijen E, et al. Genetic analysis of von Hippel-Lindau disease. Hum Mutat. 2010;31(5):521–537.
  • Na X, Wu G, Ryan CK, et al. Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol. 2003;170(2 Pt 1):588–592.
  • Lenglet M, Robriquet F, Schwarz K, et al. Identification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease. Blood. 2018;132(5):469–483.
  • Yoon D, Okhotin DV, Kim B, et al. Increased size of solid organs in patients with Chuvash polycythemia and in mice with altered expression of HIF-1alpha and HIF-2alpha. J Mol Med (Berl). 2010;88(5):523–530.
  • Gordeuk VR, Prchal JT. Vascular complications in Chuvash polycythemia. Seminars in Thrombosis and Hemostasis. 2006;32(3):289–294.
  • Carmela C, Erhan A, Laura W, et al. Non-genotoxic MDM2 inhibition selectively induces a pro-apoptotic p53 gene signature in chronic lymphocytic leukemia cells. Haematologica. 2019;104(12):2429–2442.
  • Voropaeva EN, Orlov YL, Pospelova TI, et al. The rs78378222 prevalence and the copy loss of the protective allele A in the tumor tissue of diffuse large B-cell lymphoma. PeerJ. 2020;8:e10335.
  • Li Y, Gordon MW, Xu-Monette ZY, et al. Single nucleotide variation in the TP53 3’ untranslated region in diffuse large B-cell lymphoma treated with rituximab-CHOP: a report from the international DLBCL Rituximab-CHOP consortium program. Blood. 2013;121(22):4529–4540.
  • Stacey SN, Sulem P, Jonasdottir A, Swedish Low-risk Colorectal Cancer Study Group, et al. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet. 2011;43(11):1098–1103.
  • Wang Y, Wu XS, He J, et al. A novel TP53 variant (rs78378222 A > C) in the polyadenylation signal is associated with increased cancer susceptibility: evidence from a meta-analysis. Oncotarget. 2016;7(22):32854–32865.
  • McKay JD, Hung RJ, Han Y, SpiroMeta Consortium, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126–1132.
  • Rafnar T, Sigurjonsdottir GR, Stacey SN, et al. Association of BRCA2 K3326* with small cell lung cancer and squamous cell cancer of the skin. J Natl Cancer Inst. 2018;110(9):967–974.
  • Delahaye-Sourdeix M, Anantharaman D, Timofeeva MN, et al. A rare truncating BRCA2 variant and genetic susceptibility to upper aerodigestive tract cancer. JNCI. 2015;107(5):djv037.
  • Ge Y, Wang Y, Shao W, et al. Rare variants in BRCA2 and CHEK2 are associated with the risk of urinary tract cancers. Sci Rep. 2016;6(1):33542.
  • Paul MW, Sidhu A, Liang Y, et al. Role of BRCA2 DNA-binding and C-terminal domain in its mobility and conformation in DNA repair. eLife. 2021;10:e67926.
  • Baughan S, Tainsky MA. K3326X and other C-terminal BRCA2 variants implicated in hereditary cancer syndromes: a review. Cancers (Basel). 2021;13(3):447.
  • Kolinjivadi AM, Sannino V, de Antoni A, et al. Moonlighting at replication forks – a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett. 2017;591(8):1083–1100.
  • Guo XE, Ngo B, Modrek AS, et al. Targeting tumor suppressor networks for cancer therapeutics. Curr Drug Targets. 2014;15(1):2–16.