1,887
Views
1
CrossRef citations to date
0
Altmetric
Research Article

QTL for yield per plant under water deficit and well-watered conditions and drought susceptibility index in soybean (Glycine max (L.) Merr.)

, , , , , , , , , , , , & show all
Pages 92-103 | Received 03 Aug 2022, Accepted 02 Dec 2022, Published online: 30 Dec 2022

References

  • Tuberosa R, Salvi S. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 2006;11(8):405–412.
  • Cattivelli L, Rizza F, Badeck FW, et al. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res. 2008;105(1–2):1–14.
  • Bruce WB, Edmeades GO, Barker TC. Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot. 2002;53(366):13–25.
  • RÖnnberg-Wästljung AC, Glynn C, Weih M. QTL analyses of drought tolerance and growth for a Salix dasyclados × Salix viminalis hybrid in contrasting water regimes. Theor Appl Genet. 2005;110(3):537–549.
  • Xiong LM, Wang RG, Mao GH, et al. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol. 2006;142(3):1065–1074.
  • Lee SH, Park KY, Lee HS, et al. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theor Appl Genet. 2001;103:702–709.
  • Dogan E, Kirnak H, Copur O. Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crop Res. 2007;103(2):154–159.
  • He CY, Zhang JS, Chen SY. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet. 2002;104(6-7):1125–1131.
  • Du W, Wang M, Fu S, et al. Mapping QTL for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics. 2009a;36(12):721–731.
  • Dai A. Increasing drought under global warming in observation sand models. Nature Clim Change. 2013;3(1):52–58.
  • Hufstetler EV, Boerma HR, Carter TE, et al. Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Sci. 2007;47(1):25–35.
  • Specht JE, Hume DJ, Kumudini SV. Soybean yield potential—a genetic and physiological perspective. Crop Sci. 1999;39(6):1560–1570.
  • Oya T, Nepomuceno AL, Neumaier N, et al. Drought tolerance characteristics of Brazilian soybean cultivars – evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod Sci. 2004;7(2):129–137.
  • Dias FG, Borges ACN, Viana AAB, et al. Expression analysis in response to drought stress in soybean: shedding light on the regulation of metabolic pathway genes. Genet Mol Biol. 2012;35(1 (suppl):222–232.
  • Saleem A, Aper J, Muylle H, et al. Response of a diverse European soybean collection to “short duration” and “long duration” drought stress. Front Plant Sci. 2022;13:818766.
  • Pennisi E. The blue revolution, drop by drop, gene by gene. Science. 2008;320(5873):171–173.
  • Sloane RJ, Patterson RP, Carter TE. Field drought tolerance of a soybean plant introduction. Crop Sci. 1990;30(1):118–123.
  • Ebdon JS, Kopp KL. Relationships between water use efficiency, carbon isotope discrimination, and turf performance in genotypes of Kentucky bluegrass during drought. Crop Sci. 2004;44(5):1754–1762.
  • Du W, Yu D, Fu S. Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. J Integr Plant Biol. 2009;51(9):868–878.
  • Kaler AS, Ray JD, Schapaugh WT, et al. Genome wide association mapping of canopy wilting in diverse soybean genotypes. Theor Appl Genet. 2017;130(10):2203–2217.
  • Steketee CJ, Schapaugh WT, Carter TE, et al. Genome-wide association analyses reveal genomic regions controlling canopy wilting in soybean. G3 (Bethesda). 2020;10(4):1413–1425.
  • Mian MAR, Bailey MA, Ashley DA, et al. Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci. 1996;36(5):1252–1257.
  • Mian MAR, Ashley DA, Boerma HR. An additional QTL for water use efficiency in soybean. Crop Sci. 1998;38(2):390–393.
  • Chen L, Fang Y, Li X, et al. Identification of soybean drought-tolerant genotypes and loci correlated with agronomic traits contributes new candidate genes for breeding. Plant Mol Biol. 2020;102(1–2):109–122.
  • Ye H, Roorkiwal M, Valliyodan B, et al. Genetic diversity of root system architecture in response to drought stress in grain legumes. J Exp Bot. 2018;69(13):3267–3277.
  • Chapman SC. Use of crop models to understand genotype by environment interactions for drought in real world and simulated plant breeding trials. Euphytica. 2008;161(1–2):195–208.
  • Dolferus R, Ji X, Richards RA. Abiotic stress and control of grain number in cereals. Plant Sci. 2011;181(4):331–341.
  • Hall AJ, Feoli C, Ingaramo J, et al. Gaps between farmer and attainable yields across rainfed sunflower growing regions of Argentina. Field Crop Res. 2013;143:119–129.
  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, et al. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker assisted selection strategies. Theor Appl Genet. 1997;94(6-7):887–896.
  • Kumar M, Lal SK. Molecular analysis of soybean varying in water use efficiency using SSRs markers. J Environ Biol. 2015;36(4):1011–1016.
  • Kaler AS, Dhanapal AP, Ray JD, et al. Genome-wide association mapping of carbon isotope and oxygen isotope ratios in diverse soybean genotypes. Crop Sci. 2017;57(6):3085–3100.
  • Dhanapal AP, Ray JD, Singh SK, et al. Genome-wide association study (GWAS) of carbon isotope ratio (δ 13 C) in diverse soybean [Glycine max (L.) Merr.]. Theor Appl Genet. 2015;128(1):73–91.
  • Charlson D, Bhatnagar S, King C, et al. Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) merr.]. Theor Appl Genet. 2009;119(4):587–594.
  • Abdel-Haleem H, Carter TE, Purcell LC, et al. Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr). Theor Appl Genet. 2012;125(5):837–846.
  • Hwang S, King C, Ray J, et al. Confirmation of delayed canopy wilting QTLs from multiple soybean mapping populations. Theor Appl Genet. 2015;128(10):2047–2065.
  • Hwang S, King A, Chen P, et al. Meta-analysis to refine map position and reduce confidence intervals for delayed-canopy-wilting QTLs in soybean. Mol Breed. 2016;36(7):1–4.
  • Carpentieri-Pipolo V, Pipolo AE, Abdel-Haleem H, et al. Identification of QTLs associated with limited leaf hydraulic conductance in soybean. Euphytica. 2012;186(3):679–686.
  • SAS Institute Inc. SAS/STAT software: version 9.1.3. Cary, NC: SAS Institute, 2007.
  • Terán H, Singh SP. Comparison of sources and lines selected for drought resistance in common bean. Crop Sci. 2002;42(1):64–70.
  • Lopez CG, Banowetz GM, Peterson CJ, et al. Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci. 2003;43(2):577–582.
  • Liu Z, Li H, Gou Z, et al. Genome-wide association study of soybean seed germination under drought stress. Mol Genet Genomics. 2020;295(3):661–673.
  • Akond M, Liu S, Schoener L, et al. SNP-based genetic linkage map of soybean using the SoySNP6K illumina infinium BeadChip genotyping array. PGGB. 2013;1(3):80–89.
  • Wen Z, Tan R, Yuan J, et al. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics. 2014;15(1):809.
  • Zhang YW, Tamba CL, Wen YJ, et al. mrMLM v4.0.2: an R platform for multi-locus genome-wide association studies. Genomics Proteomics Bioinform. 2020;18(4):481–487.
  • Wang SB, Feng JY, Ren WL, et al. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep. 2016;6:19444.
  • Tamba CL, Ni YL, Zhang YM. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol. 2017;13(1):e1005357.
  • Zhang J, Feng JY, Ni YL, et al. pLARmEB: integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies. Heredity (Edinb). 2017;118(6):517–524.
  • Ren WL, Wen YJ, Dunwell JM, et al. pKWmEB: integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity (Edinb). 2018;120(3):208–218.
  • Tamba CL, Zhang YM. A fast mrMLM algorithm for multi-locus genome-wide association studies. bioRxiv. 2018:341784.
  • Wen YJ, Zhang H, Ni YL, et al. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform. 2018;19(4):700–712.
  • Zhang YM, Mao Y, Xie C, et al. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics. 2005;169(4):2267–2275.
  • Zhang YM, Jia Z, Dunwell JM. Editorial: the applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci. 2019;10:100.
  • Loiselle BA, Sork VL, Nason J, et al. Spatial genetic structure of a tropical understory shrub, PSYCHOTRIA OFFICINALIS (Rubiaceae). Am J Bot. 1995;82(11):1420–1425.
  • Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131(2):479–491.
  • Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform. 2005;1:47–50.
  • Kuroda Y, Kaga A, Norihiko T, et al. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Ecol Evol. 2013;3(7):2150–2168.
  • Liang H, Yu Y, Yang H, et al. Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet. 2014;127(10):2127–2137.
  • Zhang D, Cheng H, Geng L, et al. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica. 2009;167(3):313–322.
  • Kato S, Sayama T, Fujii K, et al. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet. 2014;127(6):1365–1374.
  • Mao T, Jiang Z, Han Y, et al. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed. 2013;132(6):630–641.
  • Han Y, Teng W, Wang Y, et al. Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breed. 2015;134(3):300–309.
  • Han Y, Li D, Zhu D, et al. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet. 2012;125(4):671–683.
  • Ning H, Yuan J, Dong Q, et al. Identification of QTLs related to the vertical distribution and seed-set of pod number in soybean [Glycine max (L.) Merri]. PLoS One. 2018;13(4):e0195830.
  • Lu W, Wen Z, Li H, et al. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theor Appl Genet. 2013;126(2):425–433.
  • Yao D, Liu Z, Zhang J, et al. Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res. 2015;14(2):6101–6109.
  • Swaminathan S, Abeysekara N, Liu M, et al. Quantitative trait loci underlying host responses of soybean to Fusarium virguliforme toxins that cause foliar sudden death syndrome. Theor Appl Genet. 2016;129(3):495–506.
  • Brensha W, Kantartzi S, Meksem K, et al. Genetic analysis of root and shoot traits in the ‘Essex’ by ‘Forrest’ recombinant inbred line (RIL) population of soybean [Glycine max (L.) Merr]. JPGS. 2012;1(1):1–9.
  • Brucker E, Carlson S, Wright E, et al. Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse. Theor Appl Genet. 2005;111(1):44–49.
  • Guzman PS, Diers BW, Neece DJ, et al. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci. 2007;47(1):111–122.
  • Fox C, Cary T, Nelson R, et al. Confirmation of a seed yield QTL in soybean. Crop Sci. 2015;55(3):992–998.
  • Tischner T, Allphin L, Chase K, et al. Genetics of seed abortion and reproductive traits in soybean. Crop Sci. 2003;43(2):464–473.
  • Hu Z, Zhang H, Kan G, et al. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica. 2013;141(4–6):247–254.
  • Han Y, Teng W, Yu K, et al. Mapping QTL tolerance to phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica. 2008;162(2):231–239.
  • Fan S, Li B, Yu F, et al. Analysis of additive and epistatic quantitative trait loci underlying fatty acid concentrations in soybean seeds across multiple environments. Euphytica. 2015;206(3):689–700.
  • Wang J, Chen P, Wang D, et al. Identification of quantitative trait loci for oil content in soybean seed. Crop Sci. 2015;55(1):23–34.
  • Reinprecht Y, Poysa V, Yu K, et al. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome. 2006;49(12):1510–1527.
  • Hyten DL, Pantalone VR, Sams CE, et al. Seed quality QTL in a prominent soybean population. Theor Appl Genet. 2004;109(3):552–561.
  • Sun Y, Pan J, Shi X, et al. Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol Biol Rep. 2012;39(10):9435–9443.
  • Sun D, Li W, Zhang Z, et al. Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L. Merr.). Theor Appl Genet. 2006;112(4):665–673.
  • Vuong T, Sleper D, Shannon J, et al. Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines ichinohe) in soybean PI 567516C. Theor Appl Genet. 2010;121(7):1253–1266.
  • Li D, Pfeiffer T, Cornelius P. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci. 2008;48(2):571–581.
  • Qi Z, Wu Q, Han X, et al. Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica. 2011;179(3):499–514.
  • Tajuddin T, Watanabe S, Yamanaka N, et al. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed. Sci. 2003;53(2):133–140.
  • Cai Z, Xian P, Wang H, et al. Transcription factor GmWRKY142 confers cadmium resistance by up-regulating the cadmium tolerance 1-like genes. Front Plant Sci. 2020;11:724.
  • Yu Y, Wang N, Hu R, et al. Genome-wide identification of soybean WRKY transcription factors in response to salt stress. Springerplus. 2016;5(1):920.
  • Li Y, Jiang H, Sun X, et al. Quantitative proteomic analyses identified multiple sugar metabolic proteins in soybean under shade stress. J Biochem. 2019;165(3):277–288.
  • Zhang Y, Liu Z, Wang X, et al. Identification of genes for drought resistance and prediction of gene candidates in soybean seedlings based on linkage and association mapping. Crop J. 2022;10(3):830–839.
  • Ramirez-Vallejo P, Kelly JD. Traits related to drought resistance in common bean. Euphytica. 1998;99(2):127–136.
  • Bhatia VS, Jumrani K, Pandey GP. Developing drought tolerance in soybean using physiological approaches. Soybean Res. 2014;12:1–19.
  • Fischer RA, Maurer R. Drought resistance in spring wheat cultivars. Aust J Agric Res. 1978;29(5):897–912.
  • Beavis WD, Smith OS, Grant D, et al. Identification of quantitative trait loci using a small sample of top crossed and F4 progeny from maize. Crop Sci. 1994;34(4):882–896.
  • Tuberosa R, Sanguineti MC, Landi P, et al. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two regimes. Plant Mol Biol. 2002;48(5-6):697–712.
  • Manavalan LP, Guttikonda SK, Nguyen VT, et al. Evaluation of diverse soybean germplasm for root growth and architecture. Plant Soil. 2010;330(1–2):503–514.
  • Kaspar TC, Taylor HM, Shibles RM. Taproot elongation rates of soybean cultivars in the glasshouse and their relation to field rooting depth. Crop Sci. 1984;24(5):916–920.
  • Lam HM, Chang R, Shao G. Chapter 1: Drought. In: Liu X, editor. Research on tolerance to stresses in Chinese soybean. Beijing: China Agriculture Press; 2009. p. 20.