744
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genetic architecture of microhabitat adaptation traits in a pair of sympatric Primulina species

ORCID Icon, &
Pages 203-212 | Received 11 Aug 2022, Accepted 31 Jan 2023, Published online: 09 Feb 2023

References

  • Richardson JL, Urban MC, Bolnick DI, et al. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol. 2014;29(3):165–176.
  • Gao Y, Ai B, Kong HH, et al. Geographical pattern of isolation and diversification in karst habitat islands: a case study in the Primulina eburnean complex. J Biogeogr. 2015;42(11):2131–2144.
  • Peng H. A survey of the Danxia landform research in China. Sci Geogr Sin. 2000;20:203–211.
  • Yuan D. World correlation of karst ecosystem: objectives and implementation plan. Adv Earth Sci. 2001;16:461–466.
  • Krishnadas M, Osuri AM. Environment shapes the spatial organization of tree diversity in fragmented forests across a human-modified landscape. Ecol Appl. 2021;31(2):e02244.
  • Davis SD, Heywood VH, Hamilton AC. Centres of plant diversity. Vol. 2: Asia, Australasia and the Pacific. Gland: WWF/IUCN; 1995.
  • Feng C, Wang J, Wu L, et al. The genome of a cave plant, Primulina huaijiensis, provides insights into adaptation to limestone karst habitats. New Phytol. 2020;227(4):1249–1263.
  • Elzinga JA, Atlan A, Biere A, et al. Time after time: flowering phenology and biotic interactions. Trends Ecol Evol. 2007;22(8):432–439.
  • Galloway LF, Burgess KS. Artificial selection on flowering time: influence on reproductive phenology across natural light environments. J Ecol. 2012;100(4):852–861.
  • Kazan K, Lyons R. The link between flowering time and stress tolerance. J Exp Bot. 2016;67(1):47–60.
  • Johnston MO. Natural selection on floral traits in two species of Lobelia with different pollinators. Evolution. 1991;45(6):1468–1479.
  • Muchhala N, Thomson JD. Going to great lengths: selection for long corolla tubes in an extremely specialized bat-flower mutualism. Proc R Soc B-Biol Sci. 2009;276:2147–2152.
  • Bernal M, Estiarte M, Peñuelas J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol (Stuttg). 2011;13(2):252–257.
  • Franks SJ. Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol. 2011;190(1):249–257.
  • Haggerty BP, Galloway LF. Response of individual components of reproductive phenology to growing season length in a monocarpic herb. J Ecol. 2011;99(1):242–253.
  • Nicotra AB, Leigh A, Boyce CK, et al. The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol. 2011;38(7):535–552.
  • McDonald PG, Fonseca CR, Overton JM, et al. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct Ecol. 2003;17:50–57.
  • Poorter H, Niinemets Ü, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 2009;182(3):565–588.
  • Lambrecht SC, Dawson TE. Correlated variation of floral and leaf traits along a moisture availability gradient. Oecologia. 2007;151(4):574–583.
  • Díaz A, MartínHernández AM, DolcetSanjuan R, et al. Quantitative trait loci analysis of melon (Cucumis melo L.) domestication‑related traits. Theor Appl Genet. 2017;130(9):1837–1856.
  • Li D, Wang X, Zhang X, et al. The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol. 2016;210(1):256–268.
  • Muir CD, Pease JB, Moyle LC. Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (Solanum sect. Lycopersicon; Solanaceae). Genetics. 2014;198(4):1629–1643.
  • Goodwillie C, Ritland C, Ritland K. The genetic basis of floral traits associated with mating system evolution in Leptosiphon (Polemoniaceae): an analysis of quantitative trait loci. Evolution. 2006;60(3):491–504.
  • Remington DL, Purugganan MD. Candidate genes, quantitative trait loci, and functional trait evolution in plants. Int J Plant Sci. 2003;164:7–20.
  • Feng C, Feng C, Yang L, et al. Genetic architecture of quantitative flower and leaf traits in a pair of sympatric sister species of Primulina. Heredity. 2019;122(6):864–876.
  • Kong H, Condamine FL, Harris AJ, et al. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from Southern China. Mol Ecol. 2017;26(22):6414–6429.
  • Feng C, Yi H, Yang L, et al. The genetic basis of hybrid male sterility in sympatric Primulina species. BMC Evol Biol. 2020;20(1):49.
  • Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11:36–42.
  • R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012.
  • Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43(1):223–225.
  • van Ooijen JW. MapQTL® 5 software for the mapping of quatitative trait loci in experimental populations. Wageningen, The Netherlands: Kyazma BV; 2004.
  • Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–78.
  • Larsen R, Marx M. An introduction to probability and its applications. Englewood Cliffs: Prentice Hall Inc.; 1985.
  • Lin YR, Schertz KF, Paterson AH. Comparative analysis of QTLs affecting plant height and maturity corss the Poaceae, in reference to an interspecific sorghum population. Genetics. 1995;14:391–411.
  • Wu C-I, Davis AW. Evolution of postmating reproductive isolation–the composite nature of Haldane’s rule and its genetic bases. Am Nat. 1993;142(2):187–212.
  • Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci. 2005;10(6):297–304.
  • Broman KW, Sen Ś. Fit and exploration of multiple–QTL models. In A guide to QTL mapping with R/qtl. Statistics for biology and health. New York: Springer; 2009. p. 241–282.
  • Zhang B, Ye W, Ren D, et al. Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice. Rice. 2015;8(1):2.
  • Xia W, Xiao Z, Cao P, et al. Construction of a high-density genetic map and its application for leaf shape QTL mapping in poplar. Planta. 2018;248(5):1173–1185.
  • Frary A, Fritz LA, Tanksley SD. A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theor Appl Genet. 2004;109(3):523–533.
  • Field C, Merino J, Mooney HA. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia. 1983;60(3):384–389.
  • Jun T, Freewalt K, Michel AP, et al. Identification of novel QTL for leaf traits in soybean. Plant Breed. 2014;133(1):61–66.
  • Hund A, Frascaroli E, Leipner J, et al. Cold tolerance of the photosynthetic apparatus: pleiotropic relationship between photosynthetic performance and specific leaf area of maize seedlings. Mol Breed. 2005;16(4):321–331.
  • Laza MR, Kondo M, Ideta O, et al. Identification of quantitative trait loci for Delta C-13 and productivity in irrigated lowland rice. Crop Sci. 2006;46(2):763–773.
  • Ferris KG, Barnett LL, Blackman BK, et al. The genetic architecture of local adaptation and reproductive isolation in sympatry within the Mimulus guttatus species complex. Mol Ecol. 2017;26(1):208–224.
  • Dittmar EL, Oakley CG, Conner JK, et al. Factors influencing the effect size distribution of adaptive substitutions. Proc R Soc London B Biol Sci. 2016;283:20153065.
  • Shindo C, Aranzana MJ, Lister C, et al. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 2005;138(2):1163–1173.
  • Deng W, Ying H, Helliwell CA, et al. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci USA. 2011;108(16):6680–6685.
  • Matsumoto T, Yasumoto AA, Nitta K, et al. Difference in flowering time can initiate speciation of nocturnally flowering species. J Theor Boil. 2015;370:61–71.
  • Michalski SG, Durka W. Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages. Ecol Evol. 2015;5(11):2172–2184.
  • Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration–selection balance. Evolution. 2011;65(7):1897–1911.
  • Juenger T, Pérez-Pérez JM, Bernal S, et al. Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture. Evol Devel. 2005;7(3):259–271.
  • Lou P, Zhao J, Kim JS, et al. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot. 2007;58(14):4005–4016.
  • Nagy ES, Rice KJ. Local adaptation in two subspecies of an annual plant: implications for migration and gene flow. Evolution. 1997;51(4):1079–1089.
  • Ramsey J, Bradshaw HD, Schemske DW. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution. 2003;57:1520–1534.
  • Glennon KL, Rissler LJ, Church SA. Ecogeographic isolation: a reproductive barrier between species and between cytotypes in Houstonia (Rubiaceae). Evol Ecol. 2012;26(4):909–926.
  • Grant V. Pollination systems as isolating mechanisms in angiosperms. Evolution. 1949;3(1):82–97.
  • Segraves KA, Thompson JN. Plant polyploidy and pollination: floral traits and insect visits to diploid Heuchera grossularifolia. Evolution. 1999;53(4):1114–1127.
  • Moe AM, Weiblen GD. Pollinator-mediated reproductive isolation among dioecious fig species (Ficus, Moraceae). Evolution. 2012;66(12):3710–3721.
  • Burton TL, Husband BC. Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: mechanisms of inviability and implications for polyploid evolution. Evolution. 2000;54(4):1182–1191.
  • Grundt HH, Kjølner S, Borgen L, et al. High biological species diversity in the arctic flora. Proc Natl Acad Sci USA. 2006;103(4):972–975.
  • Borges LA, Souza LGR, Guerra M, et al. Reproductive isolation between diploid and tetraploid cytotypes of Libidibia ferrea (Caesalpinia ferrea) (Leguminosae): ecological and taxonomic implications. Plant Syst Evol. 2012;98:1371–1381.