1,113
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Spectrophotometric analysis of bioactive metabolites and fermentation optimisation of Streptomyces sp. HU2014 with antifungal potential against Rhizoctonia solani

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 231-242 | Received 24 Oct 2022, Accepted 06 Feb 2023, Published online: 26 Feb 2023

References

  • Wright MG, Bennett GM. Evolution of biological control agents following introduction to new environments. BioControl. 2018;63(1):105–116.
  • Moharam MHA, Stephan D, Koch E. Evaluation of plant-derived preparations and microorganisms as seed treatments for control of covered kernel smut of Sorghum (Sporisorium sorghi). J Plant Dis Prot. 2018;125:159–166.
  • Martinez-Diz MD, Diaz-Losada E, Andres-Sodupe M, et al. Field evaluation of biocontrol agents against black-foot and petri diseases of grapevine. Pest Manag Sci. 2021;77(2):697–708.
  • Khan MR, Doohan FM. Comparison of the efficacy of chitosan with that of a fluorescent pseudomonad for the control of Fusarium head blight disease of cereals and associated mycotoxin contamination of grain. Biol Control. 2009;48(1):48–54.
  • Lagogianni CS, DI T. Effective biopesticides and biostimulants to reduce aflatoxins in maize fields. Front Microbiol. 2019;10:1–8.
  • Song Q, Huang Y, Yang H. Optimization of fermentation conditions for antibiotic production by actinomycetes YJ1 strain against Sclerotinia sclerotiorum. J Agric Sci. 2012;4:95.
  • Hei YY, Zhang HL, Tan NN, et al. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with Lichen symbiosis from Qinghai-Tibet Plateau. Microbiol Res. 2021;244:126652.
  • Coombs JT, Franco C. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol. 2003;69(9):5603–5608.
  • Qin S, Li J, Chen HH, et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna. Appl Environ Microbiol. 2009;75(19):6176–6186.
  • Viaene T, Langendries S, Beirinckx S, et al. Streptomyces as a plant’s best friend? FEMS Microbiol Ecol. 2016;92:1–10.
  • Wan MG, Li GQ, Zhang JB, et al. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control. 2008;46(3):552–559.
  • Wu ZM, Yang Y, Kt L. Antagonistic activity of a novel antifungalmycin N2 from Streptomyces sp. N2 and its biocontrol efficacy against Rhizoctonia solani. FEMS Microbiol Lett. 2019;366:1–8.
  • Tian XL, Cao LX, Tan HM, et al. Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol. 2004;20(3):303–309.
  • Jung B, Park SY, Lee YW, et al. Biological efficacy of Streptomyces sp. strain BN1 against the cereal head blight pathogen Fusarium graminearum. Plant Pathol J. 2013;29(1):52–58.
  • Wang CL, Wang ZF, Qiao X, et al. Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett. 2013;341(1):45–51.
  • Coombs JT, Michelsen PP, Franco CM. Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control. 2004;29(3):359–366.
  • Ahsan T, Chen JG, Wu YH, et al. Screening, identification, optimization of fermentation conditions, and extraction of secondary metabolites for the biocontrol of Rhizoctonia solani AG-3. Biotechnol Equip. 2017;31(1):91–98.
  • Vellingiri MM, Jeyasundar P, Venkatesan BP, et al. Statistical optimization of parameters for enhanced bioactive metabolites produced by Streptomyces hygroscopicus AVS7. Arab J Sci Eng. 2021;46(6):5345–5360.
  • Zhao SL, Ren FE, Liu JL, et al. Screening and identification of actinomycetes for maize leaf spot and optimization of fermentation conditions. Acta Microbiol Sin. 2012;52:1228–1236.
  • Sun HQ, Zhou SN, Tan ZJ, et al. Optimization of fermentation conditions of an endophytic antagonistic actinomycete from tobacco. Chin J Appl Environ Biol. 2011;17:914–917.
  • Kamoun F, Weekers F, Ayed RB, et al. Multiple linear regression models to simulate spore yields of Bacillus amyloliquefaciens BS13 through optimization of medium composition. Biotech Appl Biochem. 2022;69(6):2686–2697.
  • Thompson DR. Response surface experimentation. J Food Process Preserv. 1982;6(3):155–188.
  • Zhu HX, Hu L, Hu HY, et al. Identification of a novel Streptomyces sp. strain HU2014 showing growth promotion and biocontrol effect against Rhizoctonia spp. in wheat. Plant Dis. 2022:1–15. DOI: 10.1094/PDIS-06-22-1493-RE.
  • Shirling ET, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16(3):313–340.
  • Grossmann L, Ebert S, Hinrichs J, et al. Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides. Algal Res. 2018;29:266–276.
  • Zhang JW, Li SK, Wu WJ. The main chemical composition and in vitro antifungal activity of the essential oils of Ocimum basilicum Linn. Var. pilosum (Willd.) Benth. Molecules. 2009;14(1):273–278.
  • Fan L, Luo Z, Li Y, et al. Synthesis and antifungal activity of imidazo[1,2-b]pyridazine derivatives against phytopathogenic fungi. Bioorg Med Chem Lett. 2020;30:127–139.
  • Al-Dhabi NA, Esmail GA, Ghilan AKM, et al. Characterization and fermentation optimization of novel thermo stable alkaline protease from Streptomyces sp. Al-Dhabi-82 from the Saudi Arabian Environment for eco-friendly and industrial applications. J King Saud Univ Sci. 2020;32:1258–1264.
  • Tortora GJ, Funke BR, Case CL. Microbiology: an introduction. 12th ed. New York (NY): Pearson; 2015. p. 150–172.
  • Guan Y, Wang QX, Lv C, et al. Fermentation time-dependent pectinase activity is associated with metabolomics variation in Bacillus licheniformis DY2. Process Biochem. 2021;101:147–155.
  • Latha S, Sivaranjani G, Dhanasekaran D. Response surface methodology: a non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit Rev Microbiol. 2017;43(5):567–582.
  • Ratnam B, Rao MN, Rao M, et al. Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World J Microbiol Biotechnol. 2003;19(5):523–526.
  • Son HJ, Heo MS, Kim YG, et al. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol Appl Biochem. 2001;33(1):1–5.
  • Kiers JL, Laeken A, Rombouts FM, et al. In vitro digestibility of Bacillus fermented soya bean. Int J Food Microbiol. 2000;60(2-3):163–169.
  • El-Naggar NEA, El-Bindary AA, Nour NS. Statistical optimization of process variables for antimicrobial metabolites production by Streptomyces anulatus NEAE-94 against some multidrug-resistant strains. Int J Pharmacol. 2013;9(6):322–334.
  • Oskay M. Antifungal and antibacterial compounds from Streptomyces strains. Afr J Biotechnol. 2009;8:3007–3017.
  • Ganesan G, Velayudhan S, Solomon R. Statistical optimization of medium constituents and conditions for improved antimicrobial compound production by marine Streptomyces sp. Arch Biol Sci (Beogr). 2017;69(4):723–731.
  • Sabu S, Singh ISB, Joseph V. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach. Environ Sci Pollut Res. 2017;24(34):26763–26777.
  • Romero-Rodríguez A, Maldonado-Carmona N, Ruiz-Villafán B, et al. Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol. 2018;111(5):761–781.
  • Feng T, Zhao J, Chu J, et al. Statistical optimizing of medium for clavulanic acid production by Streptomyces clavuligerus using response surface methodology. Appl Biochem Biotechnol. 2021;193(12):3936–3948.
  • Abdelwahed NAM, Gomaa EZ, Hassan AA. Statistical modelling and optimization of fermentation medium for lincomycin production by Streptomyces lincolnensis immobilized cells. Braz Arch Biol Techn. 2017;60:1–14.
  • Ng IS, Ye CM, Zhang ZX, et al. Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization. Bioprocess Biosyst Eng. 2014;37(3):415–423.
  • Farraj A, Varghese DA, Vagvolgyi R, et al. Antibiotics production in optimized culture condition using low cost substrates from Streptomyces sp. AS4 isolated from mangrove soil sediment. J King Saud Univ Sci. 2020;32:1528–1535.
  • Rastegari B, Karbalaei-Heidari HR. Sulfate as a pivotal factor in regulation of Serratia sp. strain S2B pigment biosynthesis. Res Microbiol. 2016;167(8):638–646.
  • El-Naggar NEA, El-Bindary AA, Nour NS. Production of antimicrobial agent inhibitory to some human pathogenic multidrug-resistant bacteria and Candida albicans by Streptomyces sp. NEAE-1. Int J Pharmacol. 2013;9:335–347.
  • Selvakumar S, Ravikumar R. 2017. A novel approach for optimization to verify RSM model by using Multi-Objective genetic algorithm (MOGA). Proceedings of the International Conference on Materials Manufacturing and Modelling (ICMMM). Mar 09–11; Vellore, India.
  • Chaudhary T, Yadav D, Chhabra D, et al. Low-cost media engineering for phosphate and IAA production by Kosakonia pseudosacchari TCPS-4 using multi-objective genetic algorithm (MOGA) statistical tool. 3 Biotech. 2021;11(4):1–11.