1,574
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Transcriptome analysis of soybean roots in response to boron deficiency

, , , , , , , & show all
Article: 2200510 | Received 06 Jul 2022, Accepted 03 Jan 2023, Published online: 27 Apr 2023

References

  • Lin H, Rao J, Shi J, et al. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. J Integr Plant Biol. 2014;56(9):1–14.
  • Li Y, Guan R, Liu Z, et al. Genetic structure and diversity of cultivated soybean (Glycine max (L.) merr.) landraces in China. Theor Appl Genet. 2008;117(6):857–871.
  • Batista MA, Inoue TT, Esper Neto M, et al. 2018. Princípios de fertilidade do solo, adubação e nutrição mineral. In Brandão filho JUT, freitas PSL, berian LOS, goto R, editors. Maringá, Brazil: PR. Eduem. p. 113–161.
  • Ross JR, Slaton NA, Kristofor R, et al. Boron fertilization influences on soybean yield and leaf and seed boron concentrations. Agron J. 2006;98(1):198–205.
  • Zhang L. Effects of foliar applications of boron and dimilin on soybean yield. Mississippi agricultural and forestry experiment station. Res Rep. 2001;22(16):1–5.
  • Li YY, Liu SQ, et al. Study on effect of balanced fertilization of soybean in different agricultural ecological regions of Heilongjiang province. Soybean Sci. 2015;06:1029–1038.
  • Zeng HQ, Zhu YY, Huang SQ, et al. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol. 2010;167(15):1289–1297.
  • Zeng HQ, Wang GP, Zhang YQ, et al. Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. Plant Soil. 2016;398(1-2):207–227.
  • Omidbakhshfard MA, Fujikura U, Jadwiga Olas J, et al. Growth-regulating factor 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. PLoS Genet. 2018;14(7):e1007484.
  • Pawlowski ML, Helfenstein J, Frossard E, et al. Boron and zinc deficiencies and toxicities and their interactions with other nutrients in soybean roots, leaves, and seeds. J Plant Nutr. 2019;42(6):634–649.
  • Camacho-Cristóbal JJ, Martín-Rejano EM, Herrera-Rodríguez MB, et al. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in arabidopsis seedlings. J Exp Bot. 2015;66(13):3831–3840.
  • Han S, Chen LS, Jiang HX, et al. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol. 2008;165(13):1331–1341.
  • Kayıhan DS, Kayıhan C, Çiftçi YÖ. Excess boron responsive regulations of antioxidative mechanism at physiobiochemical and molecular levels in Arabidopsis thaliana. Plant Physiol Biochem. 2016;109:337–345.
  • Oiwa Y, Kitayama K, Kobayashi M, et al. Boron deprivation immediately causes cell death in growing roots of Arabidopsis thaliana (L). Soil Sci Plant Nutr. 2013;59(4):621–627.)
  • Abdulnour JE, Donnelly DJ, Barthakur NN. The effect of boron on calcium uptake and growth in micropropagated potato plantlets. Potato Res. 2000;43(3):287–295.
  • Wang H, Wang Y, Du C, et al. Effects of boron and calcium supply on calcium fractionation in plants and suspension cells of rape cultivars with different boron efficiency. J Plant Nutr. 2003;26(4):789–806.
  • Bo W, Xing M, Yuchen G, et al. Research advance of NRTgene on nitrogen use efficiency. Northern Hortic. 2014;(20):198–202. 1001-0009 (2014) 20-0198-05.
  • Kastori R, Petrovic N. Effect of boron on nitrate reductase activity in young sunflower plants. J Plant Nutr. 1989;12(5):621–632.
  • Camacho-Cristobal JJ, Gonzalez-Fontes A. Boron deficiency decreases plasmalemma Hþ-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta. 2007;226(2):443–451.
  • Ramon AM, Ruiz ROC, Garate A. In vitro stabilization and distribution of nitrate reductase in tomato plants. Incidence of boron deficiency. J Plant Physiol. 1989;135(1):126–128.
  • Gao Y, Wu M, Zhang M, et al. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol Biol. 2018;97(4-5):311–323.
  • Peethambaran PK, Glenz R, Höninger S, et al. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC Plant Biol. 2018;18(1):311.
  • Herrera-Vásquez A, Fonseca A, Ugalde JM, et al. TGA class II transcription factors are essential to restrict oxidative stress in response to UV-B stress in arabidopsis. J Exp Bot. 2021;72(5):1891–1905.
  • Rong W, Qi L, Wang A, et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J. 2014;12(4):468–479.
  • Zeng H, Zhang X, Ding M, et al. Transcriptome profiles of soybean leaves and roots in response to zinc deficiency. Physiol Plant. 2019;167(3):330–351.
  • Hua Y, Feng Y, Ting Z, et al. Genome-scale mRNA transcriptomic insights into the responses of oilseed rape (Brassica napus L.) to varying boron availabilities. Plant Soil. 2017;416(1-2):205–225.
  • Jianjun H, Changhai Y, Han W, et al. Effect of KHCO3 on photosynthesis of soybean seedlings. Plant Physiol J. 2008;44(4):723–725.
  • Qin S, Lei W, Zihua T, et al. The effects of sodium bisulfite and potassium bicarbonate on the photosynthesis yield and sugar content of sugar beet (Beta vulgaris L.). Acta Agric Bor-Sin. 2010;25(3):212–216.