665
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electrospun mini-MiSp spidroin/poly(L-lactide-co-ε-caprolactone) nanofibrous scaffolds for ARPE-19 cells

ORCID Icon, , , , , , , & ORCID Icon show all
Article: 2219764 | Received 08 Mar 2023, Accepted 26 May 2023, Published online: 04 Jun 2023

References

  • Lin JB, Apte RS. Nad + and sirtuins in retinal degenerative diseases: a look at future therapies. Prog Retin Eye Res. 2018;67:1–12.
  • Kaur G, Singh NK. The role of inflammation in retinal neurodegeneration and degenerative diseases. Int J Mol Sci. 2021;23(1):386.
  • WHO. Blindness and vision impairment. Geneva (Switzerland): World Health Organisation; 2022. Available from: https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment
  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–e116.
  • Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021;7(1):31.
  • Papadopoulos Z. Recent developments in the treatment of wet age-related macular degeneration. Curr Med Sci. 2020;40(5):851–857.
  • Stahl A. The diagnosis and treatment of age-related macular degeneration. Dtsch Arztebl Int. 2020;117(29–30):513–520.
  • Kinnunen K, Petrovski G, Moe MC, et al. Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol. 2012;90(4):299–309.
  • Rohiwal SS, Ellederová Z, Ardan T, et al. Advancement in nanostructure-based tissue-engineered biomaterials for retinal degenerative diseases. Biomedicines. 2021;9(8):1005.
  • Trese M, Regatieri CV, Young MJ. Advances in retinal tissue engineering. Materials (Basel). 2012;5(1):108–120.
  • Christiansen AT, Tao SL, Smith M, et al. Subretinal implantation of electrospun, short nanowire, and smooth poly(-caprolactone) scaffolds to the subretinal space of porcine eyes. Stem Cells Int. 2012;2012:454295.
  • Lawley E, Baranov P, Young M. Hybrid vitronectin-mimicking polycaprolactone scaffolds for human retinal progenitor cell differentiation and transplantation. J Biomater Appl. 2015;29(6):894–902.
  • Sorkio AE, Vuorimaa-Laukkanen EP, Hakola HM, et al. Biomimetic collagen i and iv double layer langmuir–schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells. Biomaterials. 2015;51:257–269.
  • Del Priore LV, Tezel TH, Kaplan HJ. Survival of allogeneic porcine retinal pigment epithelial sheets after subretinal transplantation. Invest Ophthalmol Vis Sci. 2004;45(3):985–992.
  • Gandhi JK, Manzar Z, Bachman LA, et al. Fibrin hydrogels as a xenofree and rapidly degradable support for transplantation of retinal pigment epithelium monolayers. Acta Biomater. 2018;67:134–146.
  • Kearns VR, Tasker J, Akhtar R, et al. The formation of a functional retinal pigment epithelium occurs on porous polytetrafluoroethylene substrates independently of the surface chemistry. J Mater Sci Mater Med. 2017;28(8):124.
  • Lu L, Garcia CA, Mikos AG. Retinal pigment epithelium cell culture on thin biodegradable poly(dl-lactic-co-glycolic acid) films. J Biomater Sci Polym Ed. 1998;9(11):1187–1205.
  • Surrao DC, Greferath U, Chau Y-Q, et al. Design, development and characterization of synthetic Bruch’s membranes. Acta Biomater. 2017;64:357–376.
  • Redenti S, Neeley WL, Rompani S, et al. Engineering retinal progenitor cell and scrollable poly (glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials. 2009;30(20):3405–3414.
  • Redenti S, Tao S, Yang J, et al. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J Ocul Biol Dis Infor. 2008;1(1):19–29.
  • Richbourg NR, Peppas NA, Sikavitsas VI. Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. J Tissue Eng Regen Med. 2019;13(8):1275–1293.
  • Warnke PH, Alamein M, Skabo S, et al. Primordium of an artificial bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater. 2013;9(12):9414–9422.
  • Pritchard CD, Arnér KM, Langer RS, et al. Retinal transplantation using surface modified poly(glycerol-co-sebacic acid) membranes. Biomaterials. 2010;31(31):7978–7984.
  • Hotaling NA, Khristov V, Wan Q, et al. Nanofiber scaffold-based tissue-engineered retinal pigment epithelium to treat degenerative eye diseases. J Ocul Pharmacol Ther. 2016;32(5):272–285.
  • Sun H, Mei L, Song C, et al. The in vivo degradation, absorption and excretion of pcl-based implant. Biomaterials. 2006;27(9):1735–1740.
  • Xu L, Crawford K, Gorman CB. Effects of temperature and ph on the degradation of poly(lactic acid) brushes. Macromolecules. 2011;44(12):4777–4782.
  • Lasprilla AJR, Martinez G, Lunelli BH, et al. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30(1):321–328.
  • Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38(12):3484–3504.
  • Zhang M, Chang Z, Wang X, et al. Synthesis of poly(l-lactide-co-ε-caprolactone) copolymer: tructure, toughness, and elasticity. Polymers. 2021;13(8):1270.
  • Fernández J, Etxeberria A, Sarasua J-R. Synthesis, structure and properties of poly(l-lactide-co-ε-caprolactone) statistical copolymers. J Mech Behav Biomed Mater. 2012;9:100–112.
  • Wang X, Liu J, Jing H, et al. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve. Mater Sci Eng C Mater Biol Appl. 2021;121:111872.
  • Zhang D, Ni N, Chen J, et al. Electrospun sf/plcl nanofibrous membrane: a potential scaffold for retinal progenitor cell proliferation and differentiation. Sci Rep. 2015;5(1):14326.
  • Wohlrab S, Müller S, Schmidt A, et al. Cell adhesion and proliferation on rgd-modified recombinant spider silk proteins. Biomaterials. 2012;33(28):6650–6659.
  • Belbéoch C, Lejeune J, Vroman P, et al. Silkworm and spider silk electrospinning: a review. Environ Chem Lett. 2021;19(2):1737–1763.
  • Leem JW, Fraser MJ, Kim YL. Transgenic and diet-enhanced silk production for reinforced biomaterials: a metamaterial perspective. Annu Rev Biomed Eng. 2020;22(1):79–102.
  • Hardy JG, Leal-Egaña A, Scheibel TR. Engineered spider silk protein-based composites for drug delivery. Macromol Biosci. 2013;13(10):1431–1437.
  • Leal-Egaña A, Lang G, Mauerer C, et al. Interactions of fibroblasts with different morphologies made of an engineered spider silk protein. Adv. Eng. Mater. 2012;14(3):B67–B75.
  • Liu C-J, Jiang H, Wu L, et al. Oepr cloning: an efficient and seamless cloning strategy for large- and multi-fragments. Sci Rep. 2017;7:44648.
  • Li J, Li S, Huang J, et al. Spider silk-inspired artificial fibers. Adv Sci. 2022;9(5):2103965.
  • Vendrely C, Scheibel T. Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci. 2007;7(4):401–409.
  • Stark M, Grip S, Rising A, et al. Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules. 2007;8(5):1695–1701.
  • Zhou Y, Rising A, Johansson J, et al. Production and properties of triple chimeric spidroins. Biomacromolecules. 2018;19(7):2825–2833.
  • Jia Q, Wen R, Meng Q. Novel highly soluble chimeric recombinant spidroins with high yield. Int J Mol Sci. 2020;21(18):6905.
  • Rising A, Johansson J. Toward spinning artificial spider silk. Nat Chem Biol. 2015;11(5):309–315.
  • Hayashi CY, Blackledge TA, Lewis RV. Molecular and mechanical characterization of aciniform silk: Uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol. 2004;21(10):1950–1959.
  • Guinea GV, Elices M, Plaza GR, et al. Minor ampullate silks from nephila and argiope spiders: Tensile properties and microstructural characterization. Biomacromolecules. 2012;13(7):2087–2098.
  • Tan YSE, Shi PJ, Choo C-J, et al. Tissue engineering of retina and bruch’s membrane: a review of cells, materials and processes. Br J Ophthalmol. 2018;102(9):1182–1187.
  • Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl. 2007;46(30):5670–5703.
  • Henrique Lima T, Fernandes-Cunha GM, Jensen CEDM, et al. Bioactive glass nanoparticles-loaded poly (ɛ-caprolactone) nanofiber as substrate for arpe-19 cells. J Nanomater. 2016;2016:1–12.
  • Krishna L, Nilawar S, Ponnalagu M, et al. Fiber diameter differentially regulates function of retinal pigment and corneal epithelial cells on nanofibrous tissue scaffolds. ACS Appl Bio Mater. 2020;3(2):823–837.
  • Huang S, Lu W, Ge D, et al. A new microrna signal pathway regulated by long noncoding rna tgfb2-ot1 in autophagy and inflammation of vascular endothelial cells. Autophagy. 2015;11(12):2172–2183.
  • Chen S, Li Y, Zhu Y, et al. Serpine1 overexpression promotes malignant progression and poor prognosis of gastric cancer. J Oncol. 2022;2022:2647825.
  • Feng Y, Gao Y, Yu J, et al. Ccdc85b promotes non-small cell lung cancer cell proliferation and invasion. Mol Carcinog. 2019;58(1):126–134.
  • Assinder SJ, Stanton J-A, Prasad PD. Transgelin: an actin-binding protein and tumour suppressor. Int J Biochem Cell Biol. 2009;41(3):482–486.
  • Arnaud L, Benech P, Greetham L, et al. Apoe4 drives inflammation in human astrocytes via tagln3 repression and nf-κb activation. Cell Rep. 2022;40(7):111200.
  • Sina C, Arlt A, Gavrilova O, et al. Ablation of gly96/immediate early gene-x1 (gly96/iex-1) aggravates dss-induced colitis in mice: Role for gly96/iex-1 in the regulation of nf-κb. Inflamm Bowel Dis. 2010;16(2):320–331.
  • Aass KR, Kastnes MH, Standal T. Molecular interactions and functions of il-32. J Leukoc Biol. 2021;109(1):143–159.
  • Hong JT, Son DJ, Lee CK, et al. Interleukin 32, inflammation and cancer. Pharmacol Ther. 2017;174:127–137.
  • Allain EP, Rouleau M, Lévesque E, et al. Emerging roles for udp-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer. 2020;122(9):1277–1287.
  • Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol. 2016;12(7):383–401.
  • Escobar-Alvarez S, Goldgur Y, Yang G, et al. Structure and activity of human mitochondrial peptide deformylase, a novel cancer target. J Mol Biol. 2009;387(5):1211–1228.
  • Lee MD, She Y, Soskis MJ, et al. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J. Clin. Invest. 2004;114(8):1107–1116.
  • Sangshetti JN, Khan FAK, Shinde DB. Peptide deformylase: a new target in antibacterial, antimalarial and anticancer drug discovery. Curr Med Chem. 2015;22(2):214–236.
  • Tanaka D, Ikeda Y, Ikeda E, et al. Effect of amelotin on bone growth in the murine Calvarial defect model. Ann Biomed Eng. 2021;49(12):3676–3684.
  • Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214(4):516–559.
  • Fu S-J, Shen S-L, Li S-Q, et al. Hornerin promotes tumor progression and is associated with poor prognosis in hepatocellular carcinoma. BMC Cancer. 2018;18(1):815.
  • To JC, Chiu AP, Tschida BR, et al. Zbtb20 regulates wnt/ctnnb1 signalling pathway by suppressing pparg during hepatocellular carcinoma tumourigenesis. JHEP Rep. 2021;3(2):100223.
  • Cannizzaro M, Jarošová J, De Paepe B. Relevance of solute carrier family 5 transporter defects to inherited and acquired human disease. J Appl Genet. 2019;60(3–4):305–317.
  • Čepelak I, Dodig S, Pavić I. Filaggrin and atopic march. Biochem Med (Zagreb). 2019;29(2):020501.
  • Rossi AC, Mammucari C, Argentini C, et al. Two novel/ancient myosins in mammalian skeletal muscles: Myh14/7b and myh15 are expressed in extraocular muscles and muscle spindles. J Physiol. 2010;588(Pt 2):353–364.
  • Rathan-Kumar S, Roland JT, Momoh M, et al. Rab11fip1-deficient mice develop spontaneous inflammation and show increased susceptibility to Colon damage. Am J Physiol Gastrointest Liver Physiol. 2022;323(3):G239–G254.