806
Views
0
CrossRef citations to date
0
Altmetric
Research Article

WRKY gene family of Licorice (Glycyrrhiza uralensis): identification and expression analysis in response to abiotic stress

, , , , &
Article: 2225653 | Received 21 Mar 2023, Accepted 12 Jun 2023, Published online: 20 Jun 2023

References

  • Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcription factors. Trends Plant Sci. 2010;15(5):1–14. doi: 10.1016/j.tplants.2010.02.006.
  • Chen F, Hu Y, Vannozzi A, et al. The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci. 2017;36(5–6):311–335. doi: 10.1080/07352689.2018.1441103.
  • Zhou HY, Li YX, Zhang Q, et al. Genome-wide analysis of the expression of WRKY family genes in different developmental stages of wild strawberry (Fragaria vesca) fruit. PLoS One. 2016;11(5):e0154312. doi: 10.1371/journal.pone.0154312.
  • Banerjee A, Roychoudhury A. WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J. 2015;2015:807560. doi: 10.1155/2015/807560.
  • Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000;5(5):199–206. doi: 10.1016/s1360-1385(00)01600-9.
  • Li HL, Zhang LB, Guo D, et al. Identification and expression profiles of the WRKY transcription factor family in Ricinus communis. Gene. 2012;503(2):248–253. doi: 10.1016/j.gene.2012.04.069.
  • Xiong WD, Xu XQ, Zhang L, et al. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.). Gene. 2013;524(2):124–132. doi: 10.1016/j.gene.2013.04.047.
  • Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet. 1994;244(6):563–571. doi: 10.1007/BF00282746.
  • Dong JX, Chen CH, Chen ZX. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol. 2003;51(1):21–37. doi: 10.1023/a:1020780022549.
  • Ross CA, Liu Y, Shen QJ. The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol. 2007;49(6):827–842. doi: 10.1111/j.1744-7909.2007.00504.x.
  • Zheng L, Liu G, Meng X, et al. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Mol Biol. 2013;82(4–5):303–320. doi: 10.1007/s11103-013-0063-y.
  • Baranwal VK, Negi N, Khurana P. Genome-wide identification and structural, functional and evolutionary analysis of WRKY components of mulberry. Sci Rep. 2016;6(1):1–13. doi: 10.1038/srep30794.
  • Xiao Y, Zhou L, Lei X, et al. Genome-wide identification of WRKY genes and their expression profiles under different abiotic stresses in Elaeis guineensis. PLoS One. 2017;12(12):e0189224. doi: 10.1371/journal.pone.0189224.
  • Ling J, Jiang W, Zhang Y, et al. Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genom. 2011;12(1):1–20. doi: 10.1186/1471-2164-12-471.
  • Baillo EH, Hanif MS, Guo Y, et al. Genome-wide identification of WRKY transcription factor family members in sorghum (Sorghum bicolor (L.) moench). PLoS One. 2020;15(8):e0236651. doi: 10.1371/journal.pone.0236651.
  • Hu Y, Chen L, Wang H, et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J. 2013;74(5):730–745. doi: 10.1111/tpj.12159.
  • Ren X, Chen Z, Liu Y, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 2010;63(3):417–429. doi: 10.1111/j.1365-313X.2010.04248.x.
  • Qiao Z, Li CL, Zhang W. WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana. Plant Mol Biol. 2016;91(1–2):53–65. doi: 10.1007/s11103-016-0441-3.
  • Chen J, Nolan TM, Ye H, et al. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell. 2017;29(6):1425–1439. doi: 10.1105/tpc.17.00364.
  • Bao W, Wang X, Chen M, et al. A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana. Plant Cell Rep. 2018;37(7):1033–1048. doi: 10.1007/s00299-018-2289-2.
  • Song G, Son S, Lee KS, et al. OsWRKY114 negatively regulates drought tolerance by restricting stomatal closure in rice. Plants-Basel. 2022;11(15):1938–1946. doi: 10.3390/plants11151938.
  • Cai RH, Dai W, Zhang CS, et al. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta. 2017;246(6):1215–1231. doi: 10.1007/s00425-017-2766-9.
  • Zhang JW, Huang DZ, Zhao XJ, et al. Drought-responsive WRKY transcription factor genes IgWRKY50 and IgWRKY32 from Iris germanica enhance drought resistance in transgenic Arabidopsis. Front Plant Sci. 2022;13:983600. doi: 10.3389/fpls.2022.983600.
  • Barea JM, Pozo MJ, Azcón R, et al. Microbial co-operation in the rhizosphere. J Exp Bot. 2005;56(417):1761–1778. doi: 10.1093/jxb/eri197.
  • Lyu Y, Shi P, Han G, et al. Desertification control practices in China. Sustain. 2020;12(8):3258. doi: 10.3390/su12083258.
  • Han Y, Hou Z, He Q, et al. Genome-wide characterization and expression analysis of bZIP gene family under abiotic stress in Glycyrrhiza uralensis. Front Genet. 2021;12:754237. doi: 10.3389/fgene.2021.754237.
  • Mochida K, Sakurai T, Seki H, et al. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J. 2017;89(2):181–194. doi: 10.1111/tpj.13385.
  • Rai A, Hirakawa H, Rai M, et al. Chromosome-scale genome assembly of Glycyrrhiza uralensis revealed metabolic gene cluster centred specialized metabolites biosynthesis. DNA Res. 2022;29(6):1–14.
  • Rhee SY, Beavis W, Berardini TZ, et al. The Arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 2003;31(1):224–228. doi: 10.1093/nar/gkg076.
  • Finn RD, Mistry J, Schuster-Böckler B, et al. Pfam: clans, web tools and services. Nucleic Acids Res. 2006;34:D247–D251. doi: 10.1093/nar/gkj149.
  • Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784–3788. doi: 10.1093/nar/gkg563.
  • Chou KC, Shen HB. Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. NS. 2010;02(10):1090–1103. doi: 10.4236/ns.2010.210136.
  • Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739. doi: 10.1093/molbev/msr121.
  • Hu B, Jin J, Guo AY, et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformat. 2015;31(8):1296–1297. doi: 10.1093/bioinformatics/btu817.
  • Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi: 10.1016/j.molp.2020.06.009.
  • Maroufi A. Selection of reference genes for real-time quantitative PCR analysis of gene expression in Glycyrrhiza glabra under drought stress. Biologia Plant. 2016;60(4):645–654. doi: 10.1007/s10535-016-0601-y.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45-e45.
  • Jiang J, Ma S, Ye N, et al. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol. 2017;59(2):86–101. doi: 10.1111/jipb.12513.
  • Chen C, Chen X, Han J, et al. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses. BMC Plant Biol. 2020;20(1):1–19. doi: 10.1186/s12870-020-02625-8.
  • Zhang C, Wang W, Wang D, et al. Genome-wide identification and characterization of the WRKY gene family in Scutellaria baicalensis georgi under diverse abiotic stress. Int J Mol Sci. 2022;23(8):4225. doi: 10.3390/ijms23084225.
  • Nuruzzaman M, Cao H, Xiu H, et al. Transcriptomics-based identification of WRKY genes and characterization of a salt and hormone-responsive PgWRKY1 gene in Panax ginseng. Acta Bioch Et Bioph Sin. 2016;48(2):117–131. doi: 10.1093/abbs/gmv122.
  • Zhang M, Chen Y, Nie L, et al. Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis. Sci Rep. 2018;8(1):5197. doi: 10.1038/s41598-018-23558-1.
  • He H, Dong Q, Shao Y, et al. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Rep. 2012;31(7):1199–1217. doi: 10.1007/s00299-012-1241-0.
  • Di P, Wang P, Yan M, et al. Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng. BMC Genom. 2021;22(1):1–15. doi: 10.1186/s12864-021-08145-5.
  • Zhu J, Zhong S, Guan J, et al. Genome-wide identification and expression analysis of WRKY transcription factors in Akebia trifoliata: a bioinformatics study. Genes. 2022;13(9):1540. doi: 10.3390/genes13091540.
  • Qu R, Cao Y, Tang X, et al. Identification and expression analysis of the WRKY gene family in Isatis indigotica. Gene. 2021;783:145561. doi: 10.1016/j.gene.2021.145561.
  • Li C, Li D, Shao F, et al. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza. BMC Genom. 2015;16(1):1–21. doi: 10.1186/s12864-015-1411-x.
  • Liu Z, Chang Q, Cheng C, et al. Identification of yellowhorn (Xanthoceras sorbifolium) WRKY transcription factor family and analysis of abiotic stress response model. J For Res. 2021;32(3):987–1004. doi: 10.1007/s11676-020-01134-6.
  • Hao F, Yang G, Zhou H, et al. Genome-wide identification and transcriptional expression profiles of transcription factor WRKY in common walnut (Juglans regia L.). Genes. 2021;12(9):1444. doi: 10.3390/genes12091444.
  • Yue H, Wang M, Liu S, et al. Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in broomcorn millet (Panicum miliaceum L.). BMC Genom. 2016;17(1):1–11. doi: 10.1186/s12864-016-2677-3.
  • Zhu X, Liu S, Meng C, et al. WRKY transcription factors in wheat and their induction by biotic and abiotic stress. Plant Mol Biol Rep. 2013;31(5):1053–1067. doi: 10.1007/s11105-013-0565-4.
  • Guo C, Guo R, Xu X, et al. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot. 2014;65(6):1513–1528. doi: 10.1093/jxb/eru007.
  • Shiu S, Bleecker AB. Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003;132(2):530–543. doi: 10.1104/pp.103.021964.
  • Zhao NA, He MJ, Li L, et al. Identification and expression analysis of WRKY gene family under drought stress in peanut (Arachis hypogaea L.). PLoS One. 2020;15(4):e0231396. doi: 10.1371/journal.pone.0231396.
  • Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci. 2016;7:760. doi: 10.3389/fpls.2016.00760.
  • Tao Z, Kou YJ, Liu HB, et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot. 2011;62(14):4863–4874. doi: 10.1093/jxb/err144.
  • Niu C, Wei W, Zhou Q, et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ. 2012;35(6):1156–1170. doi: 10.1111/j.1365-3040.2012.02480.x.
  • Tripathi P, Rabara RC, Rushton PJ. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta. 2014;239(2):255–266. doi: 10.1007/s00425-013-1985-y.
  • Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 2005;10(2):88–94. doi: 10.1016/j.tplants.2004.12.012.
  • Ulker B, Shahid Mukhtar M, Somssich IE. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta. 2007;226(1):125–137. doi: 10.1007/s00425-006-0474-y.
  • Ay N, Irmler K, Fischer A, et al. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J. 2009;58(2):333–346. doi: 10.1111/j.0960-7412.2009.03782.x.
  • Wu M, Liu HL, Han GM, et al. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep. 2017;7(1):11721. doi: 10.1038/s41598-017-10795-z.