1,007
Views
0
CrossRef citations to date
0
Altmetric
Research Article

GmBBM7 promotes callus and root growth during somatic embryogenesis of soybean (Glycine max)

, , , , , , , , , & show all
Article: 2238833 | Received 20 Dec 2022, Accepted 17 Jul 2023, Published online: 30 Jul 2023

References

  • Steward FC, Mapes MO, Mears K. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot. 1958;45(10):1–14. doi: 10.2307/2439728.
  • Ikeuchi M, Iwase A, Rymen B, et al. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat Plants. 2015;1:15089. doi: 10.1038/nplants.2015.89.
  • Kim TD, Lee BS, Kim TS, et al. Developmental plasticity of glandular trichomes into somatic embryogenesis in Tilia amurensis. Ann Bot. 2007;100(2):177–183. doi: 10.1093/aob/mcm094.
  • Yuan G, Shui GL, Xiao FF, et al. Application of somatic embryogenesis in woody plants. Front Plant Sci. 2016;7:938. doi: 10.3389/fpls.2016.00938.
  • Fehér A. Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta. 2015;1849(4):385–402. doi: 10.1016/j.bbagrm.2014.07.005.
  • Ikeda-Iwai M, Umehara M, Satoh S, et al. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J. 2003;34(1):107–114. doi: 10.1046/j.1365-313X.2003.01702.x.
  • Hays D, Mandel R, Pharis R. Hormones in zygotic and microspore embryos of Brassica napus. Plant Growth Regul. 2001;35(1):47–58. doi: 10.1023/A:1013831116996.
  • White CN, Proebsting WM, Hedden P, et al. Gibberellins and seed development in maize. I. Evidence that gib-berellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol. 2000;122(4):1081–1088. doi: 10.1104/pp.122.4.1081.
  • Ogawa M, Hanada A, Yamauchi Y, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell. 2003;15(7):1591–1604. doi: 10.1105/tpc.011650.
  • Castro RD, Hilhorst HWM. Hormonal control of seed development in GA- and ABA-deficient tomato (Lycopersicon esculentum mill. cv. Moneymaker) mutants. Plant Sci. 2006;170(3):462–470. doi: 10.1016/j.plantsci.2005.09.014.
  • Hu J, Mitchum MG, Barnaby N, et al. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell. 2008;20(2):320–336. doi: 10.1105/tpc.107.057752.
  • Vahdati K, Bayat S, Ebrahimzadeh H, et al. Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tiss Organ Cult. 2008;93(2):163–171. doi: 10.1007/s11240-008-9355-3.
  • Braybrook SA, Harada JJ. LECs go crazy in embryo development. Trends Plant Sci. 2008;13(12):624–630. doi: 10.1016/j.tplants.2008.09.008.
  • Gaj MD. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) heynh. Plant Growth Regul. 2004;43(1):27–47. doi: 10.1023/B:GROW.0000038275.29262.fb
  • Jiménez VM. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul. 2005;47(2–3):91–110. doi: 10.1007/s10725-005-3478-x.
  • Raghavan V. Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am J Bot. 2004;91(11):1743–1756. doi: 10.3732/ajb.91.11.1743.
  • Elhiti M, Stasolla C, Wang A. Molecular regulation of plant somatic embryogenesis. In Vitro Cell Dev Biol-Plant. 2013;49(6):631–642. doi: 10.1007/s11627-013-9547-3.
  • Luo JP, Jiang ST, Pan LJ. Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Sci. 2001;161(1):125–132. doi: 10.1016/S0168-9452(01)00401-0.
  • Chen B, Maas L, Figueiredo D, et al. BABY BOOM regulates early embryo and endosperm development. Proc Natl Acad Sci USA. 2022;119(25):e2201761119. doi: 10.1073/pnas.2201761119.
  • Boutilier K, Offringa R, Sharma VK, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002;14(8):1737–1749. doi: 10.1105/tpc.001941.
  • Passarinho P, Ketelaar T, Xing M, et al. BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol Biol. 2008;68(3):225–237. doi: 10.1007/s11103-008-9364-y.
  • Horstman A, Willemsen V, Boutilier K, et al. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends Plant Sci. 2014;19(3):146–157. doi: 10.1016/j.tplants.2013.10.010.
  • Aida M, Beis D, Heidstra R, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell. 2004;119(1):109–120. doi: 10.1016/j.cell.2004.09.018.
  • Galinha C, Hofhuis H, Luijten M, et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature. 2007;449(7165):1053–1057. doi: 10.1038/nature06206.
  • Florez SL, Erwin RL, Maximova SN, et al. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol. 2015;15:121. doi: 10.1186/s12870-015-0479-4.
  • El OS, Schnell J, Abdeen A, et al. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol. 2010;74(4–5):313–326. doi: 10.1007/s11103-010-9674-8.
  • Gordon-Kamm B, Sardesai N, Arling M, et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants. 2019;8:38. doi: 10.3390/plants8020038.
  • Morcillo F, Gallard A, Pillot M, et al. EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta. 2007;226(6):1353–1362. doi: 10.1007/s00425-007-0574-3.
  • Deng W, Luo K, Li Z, et al. A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci. 2009;177(1):43–48. doi: 10.1016/j.plantsci.2009.03.009.
  • Heidmann I, Lange B, Lambalk J, et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep. 2011;30(6):1107–1115. doi: 10.1007/s00299-011-1018-x.
  • Lowe K, Wu E, Wang N, et al. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell. 2016;28(9):1998–2015. doi: 10.1105/tpc.16.00124.
  • Li M, Wrobel-Marek J, Heidmann I, et al. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiol. 2022;188(2):1095–1110. doi: 10.1093/plphys/kiab558.
  • Horstman A, Li M, Heidmann I, et al. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol. 2017;175(2):848–857. doi: 10.1104/pp.17.00232.
  • Bao A, Zhang C, Huang Y, et al. Genome editing technology and application in soybean improvement. Oil Crop Sci. 2020;5(1):31–40. doi: 10.1016/j.ocsci.2020.03.001.
  • Li SN, Cheng P, Bai YQ, et al. Analysis of soybean somatic embryogenesis using chromosome segment substitution lines and transcriptome sequencing. Genes. 2019;10:943. doi: 10.3390/genes10110943.
  • Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004;13(5):1402–1406. doi: 10.1110/ps.03479604.
  • Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739. doi: 10.1093/molbev/msr121.
  • Hu B, Jin J, Guo A-Y, et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformat. 2015;31(8):1296–1297. doi: 10.1093/bioinformatics/btu817.
  • Lee TH, Tang H, Wang X, et al. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res. 2013;41(Database issue):D1152–1158. doi: 10.1093/nar/gks1104.
  • Liu W, Xie Y, Ma J, et al. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformat. 2015;31(20):3359–3361. doi: 10.1093/bioinformatics/btv362.
  • Büyük İ, İlhan E, Şener D, et al. Genome-wide identification of CAMTA gene family members in Phaseolus vulgaris L. and their expression profiling during salt stress. Mol Biol Rep. 2019;46(3):2721–2732. doi: 10.1007/s11033-019-04716-8.
  • Li Q, Fan CM, Zhang XM, et al. Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds. Plant Cell Rep. 2012;31(10):1789–1798. doi: 10.1007/s00299-012-1282-4.
  • Wang X, Fan C, Zhang X, et al. BioVector, a flexible system for gene specific-expression in plants. BMC Plant Biol. 2013;13:198. doi: 10.1186/1471-2229-13-198.
  • Wang J, Wang J, Ma C, et al. QTL mapping and data mining to identify genes associated with the Sinorhizobium fredii HH103 T3SS effector NopD in soybean. Front Plant Sci. 2020;11:453. doi: 10.3389/fpls.2020.00453.
  • Guolong Y, Jianan Z, Jinhui W, et al. A soybean NAC homolog contributes to resistance to Phytophthora sojae mediated by dirigent proteins. Crop J. 2022;10(2):332–341. doi: 10.1016/j.cj.2021.08.009.
  • Costantino P, Spanò L, Pomponi M, et al. The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants. J Mol Appl Genet. 1984;2(5):465–470.
  • David C, Chilton MD, Tempé J. Conservation of T-DNA in plants regenerated from hairy root cultures. Nat Biotechnol. 1984;2(1):73–76. doi: 10.1038/nbt0184-73.
  • Collier R, Fuchs B, Walter N, et al. Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J. 2005;43(3):449–457. doi: 10.1111/j.1365-313X.2005.02454.x.
  • Kereszt A, Li D, Indrasumunar A, et al. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc. 2007;2(4):948–952. doi: 10.1038/nprot.2007.141.
  • Zhen HL, Xue HD, Juan L, et al. The Type-B cytokinin response regulator ARR1 inhibits shoot regeneration in an ARR12-Dependent manner in Arabidopsis. Plant Cell. 2020;32(7):2271–2291. doi: 10.1105/tpc.19.00022.
  • Fan M, Xu C, Xu K, et al. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 2012;22(7):1169–1180. doi: 10.1038/cr.2012.63.
  • Hoque ME, Mansfield JW. Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of indica rice genotypes. Plant Cell, Tissue Organ Cult. 2004;78(3):217–223. doi: 10.1023/B:TICU.0000025640.75168.2d
  • Franklin G, Sheeba CJ, Lakshmi SG. Regeneration of eggplant (Solanum melongenaL.) from root explants. In Vitro Cell Dev Biol Plant. 2004;40(2):188–191. doi: 10.1079/IVP2003491.
  • Tóth K, Batek J, Stacey G. Generation of soybean (Glycine max) transient transgenic roots. 2016;1:1–13. doi: 10.1002/cppb.20017.
  • Zhou Y, Liu W, Sun S, et al. Cloning and expression analysis of soybean regeneration-related gene GmWUS. Chinese Journal of Oil Crops Sciences. 2014;6:17–22. doi: 10.7505/j.issn.1007-9084.2014.06.003.
  • Cao D, Hou W, Song S, et al. Assessment of conditions affecting agrobacterium rhi-zogenes-mediated transformation of soybean. Plant Cell Tiss Organ Cult. 2009;96(1):45–52. doi: 10.1007/s11240-008-9458-x.
  • Wei R, Li G, Seymour AB. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal Chem. 2010;82(13):5527–5533. doi: 10.1021/ac100331b.
  • Lee HW, Kim NY, Lee DJ, et al. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol. 2009;151(3):1377–1389. doi: 10.1104/pp.109.143685.
  • Lee K, Park OS, Seo PJ. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant J. 2018;95(6):961–975. doi: 10.1111/tpj.14002.
  • Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, et al. Signaling overview of plant somatic embryogenesis. Front Plant Sci. 2019;10:77. doi: 10.3389/fpls.2019.00077.
  • Neves M, Correia S, Cavaleiro C, et al. Modulation of organogenesis and somatic embryogenesis by ethylene: an overview. Plants. 2021;10:1208. doi: 10.3390/plants10061208.
  • Wang L, Liu N, Wang T, et al. The GhmiR157a–GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynthesis. J Exp Bot. 2018;69(5):1081–1093. doi: 10.1093/jxb/erx475.
  • Ghosh A, Islam T. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. BMC Plant Biol. 2016;16:87. doi: 10.1186/s12870-016-0773-9.
  • Schmutz J, Cannon SB, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–183. doi: 10.1038/nature08670.
  • Shimomura M, Kanamori H, Komatsu S, et al. The Glycine max cv. Enrei genome for improvement of Japanese soybean cultivars. Int J Genomics. 2015;2015:358127. doi: 10.1155/2015/358127.
  • Shen Y, Liu J, Geng H, et al. De novo assembly of a Chinese soybean genome. Sci China Life Sci. 2018;61(8):871–884. doi: 10.1007/s11427-018-9360-0.
  • Xu H, Guo Y, Qiu L, et al. Progress in soybean genetic transformation over the last decade. Front Plant Sci. 2022;13:900318. doi: 10.3389/fpls.2022.900318.
  • Hu Y, Zhou L, Yang Y, et al. The gibberellin signaling negative regulator RGA-LIKE3 promotes seed storage protein accumulation. Plant Physiol. 2021;185(4):1697–1707. doi: 10.1093/plphys/kiaa114.
  • Langhansová L, Konrádová H, Vanĕk T. Polyethylene glycol and abscisic acid improve maturation and regeneration of panax ginseng somatic embryos. Plant Cell Rep. 2004;22(10):725–730. doi: 10.1007/s00299-003-0750-2.
  • Stasolla C, Yeung EC. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell, Tissue Organ Cult. 2003;74(1):15–35. doi: 10.1023/A:1023345803336.
  • Marhava P, Hoermayer L, Yoshida S, et al. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. 2019;177(4):957–969.e13. doi: 10.1016/j.cell.2019.04.015.
  • Chen K, Li GJ, Bressan RA, et al. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 2020;62(1):25–54. doi: 10.1111/jipb.12899.