742
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bigel formulations of St. John’s wort extract in wound healing: toxicological aspects

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2263570 | Received 15 Jun 2023, Accepted 21 Sep 2023, Published online: 06 Oct 2023

References

  • Hwa C, Bauer EA, Cohen DE. Skin biology. Dermatol Ther. 2001;24:1–11.
  • Shaker B, Ahmad S, Lee J, et al. In silico methods and tools for drug discovery. Comput Biol Med. 2021;137:104851. doi: 10.1016/j.compbiomed.2021.104851.
  • https://qsartoolbox.org/.” [Online].
  • Mekenyan O, Dimitrov S, Serafimova R, et al. Identification of the structural requirements for mutagenicity by incorporating molecular flexibility and metabolic activation of chemicals. I. TA100. Chem Res Toxicol. 2004;17:753–766. doi: 10.1021/tx030049t.
  • Serafimova R, Todorov M, Pavlov T, et al. Identification of the structural requirements for mutagencitiy, by incorporating molecular flexibility and metabolic activation of chemicals. II. General Ames mutagenicity model. Chem Res Toxicol. 2007;20:662–676. doi: 10.1021/tx6003369.
  • Judson RS, Martin MT, Patlewicz G, et al. Retrospective mining of toxicology data to discover multispecies and chemical class effects: anemia as a case study. Regul Toxicol Pharmacol. 2017;86:74–92. doi: 10.1016/j.yrtph.2017.02.015.
  • Mukherjee P, Roy S, Ghosh D, et al. Role of animal models in biomedical research: a review. Lab Anim Res. 2022;38:18. doi: 10.1186/s42826-022-00128-1.
  • Cherian D, Peter T, Narayanan A, et al. Malondialdehyde as a marker of oxidative stress in periodontitis patients. J Pharm Bioallied Sci. 2019;11(Suppl 2):S297–S300. doi: 10.4103/JPBS.JPBS_17_19.
  • Henning T, Weber D. Redox biomarkers in dietary interventions and nutritional observation studies—from new insights to old problems. Redox Biol. 2021;41:101922.
  • Sotirova Y, Gugleva V, Stoeva S, et al. Bigel formulations of nanoencapsulated St. John’s Wort extract—an approach for enhanced wound healing. Gels. 2023;9:360. doi: 10.3390/gels9050360.
  • Sotirova Y, Stoeva S, Nikolova R, et al. Nanostructured lipid carriers as a promising dermal delivery platform for St. John’s Wort extract: preliminary studies. JofIMAB. 2023;29:4911–4919. doi: 10.5272/jimab.2023292.4911.
  • “European Parliament, Council of the European Union Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes (Council of Europe, Strasbourg, 2010), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31986L0609&from=EN. Accessed 6 Jun 2023.”
  • “Animal Research Tomorrow | ART [Internet]. [cited 2023 Jun 6]. Available from: https://animalresearchtomorrow.org/en.”
  • “ICLAS [Internet]. [cited 2023 Jun 6]. Available from: https://iclas.org/committees/ethics-andanimal-welfare-committee/.”
  • de Moura Estevão LR, Cassini-Vieira P, Leite AGB, et al. Morphological evaluation of wound healing events in the excisional wound healing model in rats. Bio Protoc. 2019;9:e3285.
  • Eyarefe DO, Kuforiji DI, Jarikre TA, et al. Enhanced electroscalpel incisional wound healing potential of honey in Wistar rats. Int J Vet Sci Med. 2017;5:128–134. doi: 10.1016/j.ijvsm.2017.10.002.
  • Da Cruz Campos MI, Campos CN, Corrêa JOA, et al. Induced oral mucositis in Wistar rats treated with different drugs: preventive potential in cytokine production. Mol Clin Oncol. 2021;14:127. doi: 10.3892/mco.2021.2289.
  • Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–1237. doi: 10.1016/s0891-5849(98)00315-3.
  • Porter NA, Nixon J, Isaac R. Cyclic peroxides and the thiobarbituric assay. Biochim Biophys Acta. 1976;441:506–512. doi: 10.1016/0005-2760(76)90247-2.
  • Basketter D, Jírova D, Kandárová H. Review of skin irritation/corrosion hazards on the basis of human data: a regulatory perspective. Interdiscip Toxicol. 2012;5:98–104. doi: 10.2478/v10102-012-0017-2.
  • Peron AP, Mariucci RG, de Almeida IV, et al. Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of a natural antidepressant, Hypericum perforatum L. (St. John’s Wort), on vegetal and animal test systems. BMC Complement Altern Med. 2013;13:97. doi: 10.1186/1472-6882-13-97.
  • Imreova P, Feruszova J, Kyzek S, et al. Hyperforin exhibits antigenotoxic activity on human and bacterial cells. Molecules. 2017;22:167. doi: 10.3390/molecules22010167.
  • Imreova P, Miadokova E, Galova E, et al. Potential anticlastogenic effect of hyperforin. MMSL. 2013;82:180–184. doi: 10.31482/mmsl.2013.028.
  • Hokkanen J, Tolonen A, Mattila S, et al. Metabolism of hyperforin, the active constituent of St. John’s wort, in human liver microsomes. Eur J Pharm Sci. 2011;42:273–284. doi: 10.1016/j.ejps.2010.12.002.
  • Simon JC, Schempp CM, Schöpf E, Simon-Haarhaus B, inventors. University hospital Freiburg, assignee. Hyperforin ointment or cream. European patent EP 1 131 063 B1. 2003 Apr 23. https://patents.google.com/patent/EP1131063B1/en.
  • Snyder RD, Ewing D, Hendry LB. DNA intercalative potential of marketed drugs testing positive in in vitro cytogenetics assays. Mutat Res. 2006;609:47–59. doi: 10.1016/j.mrgentox.2006.06.001.
  • Api AM, Belsito D, Biserta S, et al. RIFM fragrance ingredient safety assessment, p-cresyl salicylate, CAS Registry Number 607-88-5. Food Chem Toxicol. 2020;138 Suppl 1(1):111199. doi: 10.1016/j.fct.2020.111199.
  • Tourino S, Selga A, Jimenez A, et al. Procyanidin fractions from pine (Pinus pinaster) bark: radical scavenging power in solution, antioxidant activity in emulsion, and antiproliferative effect in melanoma cells agric. J Agric Food Chem. 2005;53:4728–4735. doi: 10.1021/jf050262q.
  • Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–28006. doi: 10.1039/C4RA13315C.
  • Dong J, Cai L, Xing Y, et al. Re-evaluation of ABTS + assay for total antioxidant capacity of natural products. Nat Prod Commun. 2015;10:2169–2172.
  • Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14:89–96. doi: 10.1111/iwj.12557.
  • Zou Y, Lu Y, Wei D. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem. 2004;52:5032–5039. doi: 10.1021/jf049571r.
  • Seyhan N. Evaluation of the healing effects of Hypericum perforatum and Curcumin on burn wounds in rats. Evid Based Complement Alternat Med. 2020;2020:6462956.
  • Reuter J, Huyke C, Scheuvens H, et al. Skin tolerance of a new bath oil containing St. John’s Wort extract. Skin Pharmacol Physiol. 2008;21:306–311. doi: 10.1159/000148223.
  • Wölfle U, Seelinger G, Schempp C. Topical application of St. John’s wort (Hypericum perforatum). Planta Med. 2014;80:109–120. doi: 10.1055/s-0033-1351019.
  • Davey M, Stals E, Panis B, et al. High-throughput determination of malondialdehyde in plant tissues. Anal Biochem. 2005;347:201–207. doi: 10.1016/j.ab.2005.09.041.
  • Horie M, Tabei Y. Role of oxidative stress in nanoparticles toxicity. Free Radic Res. 2021;55:331–342. doi: 10.1080/10715762.2020.1859108.
  • Koenig G, Seneff S. Gamma-glutamyltransferase: a predictive biomarker of cellular antioxidant inadequacy and disease risk. Dis Markers. 2015;2015:818518–818570. doi: 10.1155/2015/818570.
  • Plaa GL. Evaluation of Hepatotoxicity: Physiological and Biochemical Measures of Hepatic Function in Animals. In: McQueen CA, editor. Comprhensive Toxicology. 2nd ed. Amsterdam, Netherlands: Elsevier; 2010. p. 129–140.
  • Dasgupta A, Wahed A. Cardiac Markers. In: Clinical Chemistry, Immunology and Laboratory Quality Control: A Comprehensive Review for Board Preparation, Certification and Clinical Practice. 1st ed. Cambridge, MA, USA: Elsevier; 2014. p. 127–144.
  • Music M, Dervisevic A, Pepic E, et al. Metabolic syndrome and serum liver enzymes level at patients with type 2 diabetes mellitus. Med Arch. 2015;69:251–255. doi: 10.5455/medarh.2015.69.251-255.
  • Vernon G, Baranova A, Younossi Z. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–285. doi: 10.1111/j.1365-2036.2011.04724.x.
  • Negreş S, Scutari C, Ionică F, et al. Influence of hyperforin on the morphology of internal organs and biochemical parameters, in experimental model in mice. Rom J Morphol Embryol. 2016;57:663–673.
  • Oblakova M, Nikolova G, Hristakieva P, et al. Influence of some dry herbs as a dietary supplement on productivity, natural humoral immunity and oxidative status in broiler turkeys. Bulg J Agric Sci. 2022;28:752–763.
  • Oliveira A, Pinho C, Fonte P, et al. Development, characterization, antioxidant and hepatoprotective properties of poly(Ɛ-caprolactone) nanoparticles loaded with a neuroprotective fraction of Hypericum perforatum. Int J Biol Macromol. 2018;110:185–196. doi: 10.1016/j.ijbiomac.2017.10.103.
  • Öztürk Y, Aydin S, Başer K, et al. Hepatoprotective activity of Hypericum perforatum L. alcoholic extract in rodents. Phytother. Res. 1992;6:44–46. doi: 10.1002/ptr.2650060111.
  • Bayramoglu G, Bayramoglu A, Engur S, et al. The hepatoprotective effects of Hypericum perforatum L. on hepatic ischemia/reperfusion injury in rats. Cytotechnology. 2014;66:443–448. doi: 10.1007/s10616-013-9595-x.
  • Chang N, Goodson WH, III, Gottrup F, et al. Direct measurement of wound and tissue oxygen tension in postoperative patients. Ann Surg. 1983;197:470–478. doi: 10.1097/00000658-198304000-00017.
  • Kang S, Lee D, Theusch BE, et al. Wound hypoxia in deep tissue after incision in rats. Wound Repair Regen. 2013;21:730–739. doi: 10.1111/wrr.12081.
  • Haller HL, Sander F, Popp D, et al. Oxygen, pH, lactate, and Metabolism-How old knowledge and new insights might be combined for new wound treatment. Medicina (Kaunas). 2021;57:1190. doi: 10.3390/medicina57111190.
  • Ghani QP, Wagner S, Becker HD, et al. Regulatory role of lactate in wound repair. Methods Enzymol. 2004;381:565–575. doi: 10.1016/S0076-6879(04)81036-X.
  • Awasthi D, Nagarkoti S, Sadaf S, et al. Glycolysis dependent lactate formation in neutrophils: a metabolic link between NOX-dependent and independent NETosis. Biochim Biophys Acta Mol Basis Dis. 2019;1865:165542. doi: 10.1016/j.bbadis.2019.165542.
  • Hunt TK, Aslam RS, Beckert S, et al. Aerobically-Derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal. 2007;9:1115–1124. doi: 10.1089/ars.2007.1674.
  • Zieker D, Küper M, Löffler M, et al. Lactate induces collagen synthesis, VEGF expression and migration in endothelial cells via generation of superoxide. In: Schumpelick V, Bruch HP, Schackert HK, editors. Chirurgisches Forum und DGAV Forum 2009, Vol. 38. Kongress der Deutschen Gesellschaft für Chirurgie; 2009 Apr 28-May 1; München, Germany. Berlin, Germany: Springer; 2009. p. 299–301.
  • Cuddihy J, Wu G, Ho L, et al. Lactate dehydrogenase activity staining demonstrates time-dependent immune cell infiltration in human ex-vivo burn-injured skin. Sci Rep. 2021;11:21249. doi: 10.1038/s41598-021-00644-5.
  • Wehrman RF, Genschel U, Charli A, et al. Interleukin-6 and lactate dehydrogenase expression in a novel ex vivo rocking model of equine corneal epithelial wound healing. Vet Ophthalmol. 2021;24:509–519. doi: 10.1111/vop.12935.
  • González-Callejas C, Moral R, Nestares T, et al. Differences in tissue damage-related markers between large-stitch versus small-stitch surgical closure techniques. J Surgery. 2022;2:1033.
  • Vidinský B, Gál P, Toporcer T, et al. Histological study of the first seven days of skin wound healing in rats. Acta Vet. Brno. 2006;75:197–202. doi: 10.2754/avb200675020197.
  • Enoch S, Price P. Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the aged. World Wide Wounds. 2004:1–17.
  • Adib Y, Bensussan A, Michel L. Cutaneous wound healing: a review about innate immune response and current therapeutic applications. Mediators Inflamm. 2022;2022:5344085.
  • Park J, Han X, Piao M, et al. Hyperoside induces endogenous antioxidant system to alleviate oxidative stress. J Cancer Prev. 2016;21:41–47. doi: 10.15430/JCP.2016.21.1.41.
  • Süntar I, Akkol E, Yilmazer D, et al. Investigations on the in vivo wound healing potential of Hypericum perforatum L. J Ethnopharmacol. 2010;127:468–477. doi: 10.1016/j.jep.2009.10.011.
  • Xing H, Fu R, Cheng C, Cai Y, Wang X, Deng D, Gong X, Chen J. Hyperoside protected against oxidative stress-induced liver injury via the PHLPP2-AKT-GSK-3β signaling pathway in vivo and in vitro. Front Pharmacol. 2020;11:1–12. doi: 10.3389/fphar.2020.01065.