1,195
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Utilization of plant secondary metabolites for plant protection

ORCID Icon, &
Article: 2297533 | Received 29 Nov 2023, Accepted 15 Dec 2023, Published online: 27 Dec 2023

References

  • Someus E. Recycling and upgrading of bone meal for environmentally friendly crop protection and nutrition: the PROTECTOR project. In: Waldron K, editor. Handbook of waste management and co-product recovery in food processing. Sawston, Cambridge, UK: Woodhead Publishing; 2009. Chapter 23, p. 1–11. doi: 10.1533/9781845697051.4.553.
  • Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmental change. Science. 2001;292(5515):281–284. doi: 10.1126/science.1057544.
  • Imadi SR, Shazadi K, Gul A, et al. Sustainable crop production system. In: Hakeem KR, Akhtar MS, Abdullah SNA, editors. Plant, soil and microbes. Vol 1, Implications in crop science. Cham, Switzerland: Springer International Publishing; 2016. p. 103–116. doi: 10.1007/978-3-319-27455-3_6.
  • Soria-Lopez A, Garcia-Perez P, Carpena M, et al. Challenges for future food systems: from the green revolution to food supply chains with a special focus on sustainability. Food Frontiers. 2023;4(1):9–20. doi: 10.1002/fft2.173.
  • Ray A. The darker side of agricultural intensification—disappearance of autumn or Aus rice, entry of HYVs, and implications in terms of environmental sustainability in a ‘green revolution’ state of Eastern India. World Dev Sustainability. 2022;1:100028. doi: 10.1016/j.wds.2022.100028.
  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, et al. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health. 2016;4:148. doi: 10.3389/fpubh.2016.00148.
  • Nieder R, Benbi DK, Reichl FX. Health risks associated with pesticides in soils. In: Nieder R, Benbi DK, Reichl FX, editors. Soil components and human health. Netherlands, Dordrecht: Springer; 2018. p. 503–573. doi: 10.1007/978-94-024-1222-2_10.
  • Šernaitė L. Plant extracts: antimicrobial and antifungal activity and appliance in plant protection (review). Sodininkystė Ir Daržininkystė. 2017;36(3/4):58–68.
  • Stoytcheva M. Pesticides in the modern world—risks and benefits. London, UK: IntechOpen; 2011. doi: 10.5772/949.
  • Brühl CA, Zaller JG. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front Environ Sci. 2019;7:177 doi: 10.3389/fenvs.2019.00177.
  • Topping CJ, Aldrich A, Berny P. Overhaul environmental risk assessment for pesticides. Science. 2020;367(6476):360–363. doi: 10.1126/science.aay1144.
  • Ayilara MS, Adeleke BS, Akinola SA, et al. Biopesticides as a promising alternative to synthetic pesticides: a case for microbial pesticides, phytopesticides, and nanobiopesticides. Front Microbiol. 2023;14:1040901. doi: 10.3389/fmicb.2023.1040901.
  • Mezzetti B, Smagghe G, Arpaia S, et al. RNAi: what is its position in agriculture? J Pest Sci. 2020;93(4):1125–1130. doi: 10.1007/s10340-020-01238-2.
  • Kumar J, Ramlal A, Mallick D, et al. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants (Basel). 2021;10(6):1185. doi: 10.3390/plants10061185.
  • Lyubenova A, Rusanova М, Nikolova M, et al. Plant extracts and Trichoderma spp: possibilities for implementation in agriculture as biopesticides. Biotechnol Equip. 2023;37(1):159–166. doi: 10.1080/13102818.2023.2166869.
  • Lengai GMW, Muthomi JW, Mbega ER. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci Afr. 2020;7:e00239. doi: 10.1016/j.sciaf.2019.e00239.
  • Palit P. Bioactivity-guided phytofractions: an emerging natural drug discovery tool for safe and effective disease management. In: Mandal SC, Mandal V, Konishi T, editors. Natural products and drug discovery. Amsterdam, Netherlands: Elsevier; 2018. Chapter 3, p. 57–71. doi: 10.1016/B978-0-08-102081-4.00003-4.
  • Zhang S, Zhu W, Wang B, et al. Secondary metabolites from the invasive Solidago canadensis L. accumulation in soil and contribution to inhibition of soil pathogen Pythium ultimum. Appl Soil Ecol. 2011;48(3):280–286. doi: 10.1016/j.apsoil.2011.04.011.
  • Zaynab M, Fatima M, Abbas S, et al. Role of secondary metabolites in plant defense against pathogens. Microb Pathog. 2018;124:198–202. doi: 10.1016/j.micpath.2018.08.034.
  • Ntalli NG, Caboni P. Botanical nematicides: a review. J Agric Food Chem. 2012;60(40):9929–9940. doi: 10.1021/jf303107j.
  • Tiwari R, Rana CS. Plant secondary metabolites: a review. Int J Eng Res Gen Sci. 2015;3(5):661–670.
  • Doughari JH. An overview of plant immunity. J Plant Pathol Microbiol. 2015;6(11):322. doi: 10.4172/2157-7471.1000322.
  • Perveen K, Bokahri NA. Management of alternaria leaf blight in tomato plants by mentha essential oil. Plant Prot Sci. 2020;56(3):191–196. doi: 10.17221/100/2019-PPS.
  • Singh P, Pandey AK. Prospective of essential oils of the genus mentha as biopesticides: a review. Front Plant Sci. 2018;9:1295. doi: 10.3389/fpls.2018.01295.
  • Ahmed E, Arshad M, Khan MZ, et al. Secondary metabolites and their multidimensional prospective in plant life. J Pharmacognosy Phytochem. 2017;6(2):205–214.
  • Divekar PA, Narayana S, Divekar BA, et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022;23(5):2690. doi: 10.3390/ijms23052690.
  • Zaker M. Natural plant products as eco-friendly fungicides for plant diseases control—a review. Agriculturists. 2016;14(1):134–141. doi: 10.3329/agric.v14i1.29111.
  • Gurjar MS, Ali S, Akhtar M, et al. Efficacy of plant extracts in plant disease management. Agri Sci. 2012;03(03):425–433. doi: 10.4236/as.2012.33050.
  • Wink M. Evolution of secondary metabolites in legumes (fabaceae). S Afr J Bot. 2013;89:164–175. doi: 10.1016/j.sajb.2013.06.006.
  • Cheng F, Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci. 2015;6:1020. doi: 10.3389/fpls.2015.01020.
  • Wu Y, Ren D, Gao C, et al. Recent advances for alkaloids as botanical pesticides for use in organic agriculture. Int J Pest Manage. 2021;69(3):288–298. doi: 10.1080/09670874.2021.1917723.
  • Evstatieva L, Hardalova R, Stoyanova K. Medicinal plants in Bulgaria: diversity, legislation, conservation and trade. Phytologia Balcanica. 2007;13(3):415–427.
  • Jacobson M. Botanical pesticides. In: Insecticides of plant origin. vol. 387. Washington, DC, US: American Chemical Society; 1989. p. 1–10. doi: 10.1021/bk-1989-0387.ch001.
  • Isman MB. Plant essential oils for pest and disease management. Crop Prot. 2000;19(8-10):603–608. doi: 10.1016/S0261-2194(00)00079-X.
  • Sun W, Shahrajabian MH, Cheng Q. Pyrethrum an organic and natural pesticide. J Biol Env Sci. 2020;14(40):41–44. http://acikerisim.uludag.edu.tr/jspui/handle/11452/21396
  • Lybrand DB, Xu H, Last RL, et al. How plants synthesize pyrethrins: safe and biodegradable insecticides. Trends Plant Sci. 2020;25(12):1240–1251. doi: 10.1016/j.tplants.2020.06.012.
  • Shawkat MS, Khazaal AQ, Majeed MR. Extraction of pyrethrins from Chrysanthemum cinerariaefolium petals and study its activity against beetle flour Tribolium castanum. Iraqi J Sci. 2011;52(4):456–463.
  • Shimira F, Uğur S, Özdemir ŞM, et al. Future and prospect use of pyrethrum (Chrysanthemum cinerariifolium) as part of the integrated pest and disease management (IPDM) tool in Turkey. Turkish JAF Sci Tech. 2021;9(1):150–158. Article 1. doi: 10.24925/turjaf.v9i1.150-158.3771.
  • Durán-Lara EF, Valderrama A, Marican A. Natural organic compounds for application in organic farming. Agriculture. 2020;10(2):41. Article 2. doi: 10.3390/agriculture10020041.
  • Nwachukwu ID, Asawalam EF. Evaluation of freshly prepared juice from garlic (Allium sativum L.) as a biopesticide against the maize weevil, Sitophilus zeamais (motsch.) (coleoptera: curculionidae). J Plant Protect Res. 2014;54(2):132–138. doi: 10.2478/jppr-2014-0021.
  • Fatima K, Lovejoy T, Wisdom K. Efficacy of garlic (Allium sativum) and red chilli pepper (Capsicum annum) extracts in the control of red spider mite (Tetranychus urticae) in tomatoes (Lycopersicon esculentum). Am J Appl Sci. 2015;10(2):124–131. https://www.appliedsciencesjournal.com/pdfs/volume-10-issue-2/6.pdf
  • Golubkina N, Zayachkovsky V, Sheshnitsan S, et al. Prospects of the application of garlic extracts and selenium and silicon compounds for plant protection against herbivorous pests: a review. Agriculture. 2022;12(1):64. doi: 10.3390/agriculture12010064.
  • Chiasson H, Bélanger A, Bostanian N, et al. Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (asteraceae) essential oils obtained by three methods of extraction. J Econ Entomol. 2001;94(1):167–171. doi: 10.1603/0022-0493-94.1.167.
  • Elisovetskaya D, Nastas T. Biological activity of the extract of Veratrum lobelianum bernh. against harmful species of insects and mites and its impact on entomophages. Oltenia J Stud Natural Sci. 2013;29(1):185–192.
  • Ujváry I. Pest control agents from natural products. In: Krieger R, editor. Hayes’ handbook of pesticide toxicology. 3rd ed. Cambridge, Massachusetts, US: Academic Press; 2010. Chapter 3, p. 119–229. doi: 10.1016/B978-0-12-374367-1.00003-3.
  • Zou C, Lv C, Wang Y, et al. Larvicidal activity and insecticidal mechanism of Chelidonium majus on Lymantria dispar. Pestic Biochem Physiol. 2017;142:123–132. doi: 10.1016/j.pestbp.2017.04.009.
  • Kesraoui S, Andrés MF, Berrocal-Lobo M, et al. Direct and indirect effects of essential oils for sustainable crop protection. Plants (Basel). 2022;11(16):2144. doi: 10.3390/plants11162144.
  • Caboni P, Ntalli NG. Botanical nematicides, recent findings. In: Gross AD, Coats JR, Duke SO, Seiber JN, editors. Biopesticides: state of the art and future opportunities. Vol. 1172. Washington, DC, US: American Chemical Society; 2014. p. 145–157. doi: 10.1021/bk-2014-1172.ch011.
  • Aissani N, Tedeschi P, Maietti A, et al. Nematicidal activity of allylisothiocyanate from horseradish (Armoracia rusticana) roots against Meloidogyne incognita. J Agric Food Chem. 2013;61(20):4723–4727. doi: 10.1021/jf4008949.
  • Gong B, Bloszies S, Li X, et al. Efficacy of garlic straw application against root-knot nematodes on tomato. Sci Hortic. 2013;161:49–57. doi: 10.1016/j.scienta.2013.06.027.
  • Taylor A, Bonafos R, Chovelon M, et al. Equisetum arvense (horsetail) extract: the first approved basic substance allowed for EU crop protection. IJBSM. 2022;13(6):566–577. https://ojs.pphouse.org/index.php/IJBSM/article/view/4254 doi: 10.23910/1.2022.2757.
  • Langa-Lomba N, Buzón-Durán L, Martín-Ramos P, et al. Assessment of conjugate complexes of chitosan and Urtica dioica or Equisetum arvense extracts for the control of grapevine trunk pathogens. Agronomy. 2021;11(5):976. doi: 10.3390/agronomy11050976.
  • Trebbi G, Negri L, Bosi S, et al. Evaluation of Equisetum arvense (horsetail macerate) as a copper substitute for pathogen management in field-grown organic tomato and durum wheat cultivations. Agriculture. 2021;11(1):5. doi: 10.3390/agriculture11010005.
  • Nahak G, Kanta Sahu R. Bio-controlling effect of leaf extract of Tagetes patula L. (marigold) on growth parameters and diseases of tomato. Pak J Biol Sci. 2017;20(1):12–19. doi: 10.3923/pjbs.2017.12.19.
  • Sanjarian M, Rakhshandehroo F, Rezaee S. The effect of Persian lilac and fig plant crude aquatic and ethanolic extracts on disease caused by cucumber mosaic virus in cucumber (Cucumis sativus) plants under greenhouse condition. J Appl Res Plant Protect. 2021;10(2):47–61. doi: 10.22034/arpp.2021.12779.
  • Mostafaee S, Rakhshandehroo F, Rezadoost H, et al. Study of the inhibitory effects of hydro-alcoholic extract and nanoemulsion essential oil of Khuzistani savory on local lesion induction by cucumber mosaic virus (CMV) on cowpea. BioControl Plant Protect. 2021;9(1):13–23. doi: 10.22092/bcpp.2021.126358.
  • Pokhrel B, Choden D. Antifungal efficacy of Hyptis suaveolens and Rumex nepalensis extracts against Alternaria solani: an approach for bio-pesticides. Biocatal Agric Biotechnol. 2022;43:102439. doi: 10.1016/j.bcab.2022.102439.
  • Hou H, Zhang X, Zhao T, et al. Effects of Origanum vulgare essential oil and its two main components, carvacrol and thymol, on the plant pathogen Botrytis cinerea. Peer J. 2020;8:e9626. doi: 10.7717/peerj.9626.
  • Šernaitė L, Rasiukevičiūtė N, Valiuškaitė A. The extracts of cinnamon and clove as potential biofungicides against strawberry grey mould. Plants (Basel). 2020;9(5):613. doi: 10.3390/plants9050613.
  • Ahmed HFA, Seleiman MF, Mohamed IAA, et al. Activity of essential oils and plant extracts as biofungicides for suppression of soil-borne fungi associated with root rot and wilt of marigold (Calendula officinalis L.). Horticulturae. 2023;9(2):222. doi: 10.3390/horticulturae9020222.
  • Kalleli F, Ben Salem I, Boughalleb-M’Hamdi N, et al. In vitro and in vivo efficiency of fennel essential oil against tomato Fusarium wilt and its promotion effect in plant growth. Int J Agri Env Biores. 2019;4(4):180–199. doi: 10.35410/IJAEB.2019.4417.
  • Okorska SB, Dąbrowska JA, Głowacka K, et al. The fungicidal effect of essential oils of fennel and hops against Fusarium disease of pea. Appl Sci. 2023;13(10):6282. doi: 10.3390/app13106282.
  • Ali HM, Elgat WAAA, El-Hefny M, et al. New approach for using of Mentha longifolia L. and Citrus reticulata L. essential oils as wood-biofungicides: GC-MS, SEM, and MNDO quantum chemical studies. Materials (Basel). 2021;14(6):1361. doi: 10.3390/ma14061361.
  • Karan T, Belguzar S, Selvi B. Antibacterial activity of essential oils of Origanum bilgeri, Origanum onites, Satureja spicigera leaves against agricultural plant pathogenic bacteria. J Essential Oil Bearing Plants. 2021;24(5):1159–1168. doi: 10.1080/0972060X.2021.2000504.
  • Bozkurt İA, Soylu S, Kara M, et al. Chemical composition and antibacterial activity of essential oils isolated from medicinal plants against gall forming plant pathogenic bacterial disease agents. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2020;23(6):1474–1482. Article 6. doi: 10.18016/ksutarimdoga.vi.723544.
  • Spadaro D, Droby S, Gullino ML, editors. Postharvest pathology: next generation solutions to reducing losses and enhancing safety. Vol. 11. Cham, Switzerland: Springer International Publishing; 2021. doi: 10.1007/978-3-030-56530-5.
  • Guru PN, Mridula D, Dukare AS, et al. A comprehensive review on advances in storage pest management: current scenario and future prospects. Front Sustain Food Syst. 2022;6:993341 doi: 10.3389/fsufs.2022.993341.
  • Josphert NK, Robyn M, Xiuyuan X, et al. The significant role of post-harvest management in farm management. Aflatoxin Mitigat Food Sec Sub-Saharan Africa. 2012;2(6):279–288.
  • Tefera T. Post-harvest losses in African maize in the face of increasing food shortage. Food Sec. 2012;4(2):267–277. doi: 10.1007/s12571-012-0182-3.
  • Coates LM, Johnson GI, Dale M. Postharvest pathology of fruit and vegetables. In: Brown J, Ogle H, editors. Plant pathogens and plant diseases. Armidale, Australia: Rockvale Publications; 1997. p. 533–547.
  • Scheff DS, Phillips TW. Integrated pest management. In: Rosentrater KA, editor. Storage of cereal grains and their products. 5th ed. Sawston, Cambridge, UK: Woodhead Publishing; 2022. Chapter 23, p. 661–675. doi: 10.1016/B978-0-12-812758-2.00002-7.
  • Jones CL. Fumigation. In: Rosentrater KA, editor. Storage of cereal grains and their products. 5th ed. Sawston, Cambridge, UK: Woodhead Publishing; 2022. Chapter 24, p. 677–685. doi: 10.1016/B978-0-12-812758-2.00024-6.
  • Chang Y, Harmon PF, Treadwell DD, et al. Biocontrol potential of essential oils in organic horticulture systems: from farm to fork. Front Nutr. 2021;8:805138. doi: 10.3389/fnut.2021.805138.
  • Isman MB. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem Rev. 2020b;19(2):235–241. doi: 10.1007/s11101-019-09653-9.
  • Leite BM, Cunha FA, Bertozzi BG, et al. A review of insecticidal effect of essential oils on stored grain pests. Food Sci. Technol (Campinas). 2023;43:e106022 doi: 10.5327/fst.106022.
  • Ho SH, Koh L, Ma Y, et al. The oil of garlic, Allium sativum L. (amaryllidaceae), as a potential grain protectant against Tribolium castaneum (herbst) and Sitophilus zeamais motsch. Postharvest Biol Technol. 1996;9(1):41–48. doi: 10.1016/0925-5214(96)00018-X.
  • Friedman M, Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. J. Agric. Food Chem. 2017;65(48):10406–10423. doi: 10.1021/acs.jafc.7b04344.
  • Pan C, Yang K, Erhunmwunsee F, et al. Inhibitory effect of cinnamaldehyde on Fusarium solani and its application in postharvest preservation of sweet potato. Food Chem. 2023;408:135213. doi: 10.1016/j.foodchem.2022.135213.
  • Lammari N, Louaer O, Meniai AH, et al. Plant oils: from chemical composition to encapsulated form use. Int J Pharm. 2021;601:120538. doi: 10.1016/j.ijpharm.2021.120538.
  • Purkait A, Biswas S, Saha S, et al. Formulation of plant based insecticides, their bio-efficacy evaluation and chemical characterization. Crop Prot. 2019;125:104907. doi: 10.1016/j.cropro.2019.104907.
  • Khandelwal S, Maheshwari P, Jain V, et al. Formulation and evaluation of herbal liquid insecticide. J Drug Delivery Ther. 2023;13(3):43–46. doi: 10.22270/jddt.v13i3.5755.
  • Jadoun S, Arif R, Jangid NK, et al. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett. 2021;19(1):355–374. doi: 10.1007/s10311-020-01074-x.
  • Gade A, Ingle P, Nimbalkar U, et al. Nanofertilizers: the next generation of agrochemicals for long-term impact on sustainability in farming systems. Agrochemicals. 2023;2(2):257–278. doi: 10.3390/agrochemicals2020017.
  • De Oliveira JL, Campos EVR, Bakshi M, et al. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv. 2014;32(8):1550–1561. doi: 10.1016/j.biotechadv.2014.10.010.
  • Adeyemi SB, Akere AM, Orege JI, et al. Polymeric nanoparticles for enhanced delivery and improved bioactivity of essential oils. Heliyon. 2023;9(6):e16543. doi: 10.1016/j.heliyon.2023.e16543.
  • Katoch S, Salwan R, Sharma V. Nanopriming technology for improving crop plants under stressful conditions: concept and methods. In: Ghorbanpour M, Shahid MA, editors. Nano-enabled agrochemicals in agriculture. Cambridge, Massachusetts, US: Academic Press; 2022. Chapter 9, p. 159–174. doi: 10.1016/B978-0-323-91009-5.00009-4.
  • Ben-Jabeur M, Vicente R, López-Cristoffanini C, et al. A novel aspect of essential oils: coating seeds with thyme essential oil induces drought resistance in wheat. Plants (Basel). 2019;8(10):371. doi: 10.3390/plants8100371.
  • Marrone PG. Status and potential of bioprotection products for crop protection. In: Maienfisch P, Mangelinckx S, editors. Recent highlights in the discovery and optimization of crop protection products. Cambridge, Massachusetts, US: Academic Press; 2021. Chapter 2, p. 25–38. doi: 10.1016/B978-0-12-821035-2.00002-4.
  • Ntalli NG, Menkissoglu-Spiroudi U. Pesticides of botanical origin: a promising tool in plant protection. In: Pesticides—formulations, effects, fate. London, UK: IntechOpen; 2011. doi: 10.5772/13776.
  • Damalas CA, Koutroubas SD. Current status and recent developments in biopesticide use. Agriculture. 2018;8(1):13. doi: 10.3390/agriculture8010013.
  • Acheuk F, Basiouni S, Shehata AA, et al. Status and prospects of botanical biopesticides in Europe and mediterranean countries. Biomolecules. 2022;12(2):311. doi: 10.3390/biom12020311.
  • Isman MB. A renaissance for botanical insecticides? Pest Manag Sci. 2015;71(12):1587–1590. doi: 10.1002/ps.4088.
  • EUROPEAN COMMISSION. 2020. Report from the commission to the European parliament and the council on the experience gained by member states on the implementation of national targets established in their national action plans and on progress in the implementation of Directive 2009/128/EC on the sustainable use of pesticides. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0204.
  • Isman MB. Botanical insecticides in the twenty-first century—fulfilling their promise? Annu Rev Entomol. 2020a;65(1):233–249. doi: 10.1146/annurev-ento-011019-025010.
  • Yoon M-Y, Cha B, Kim J-C. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol J. 2013;29(1):1–9. doi: 10.5423/PPJ.RW.05.2012.0072.