49
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The regulatory network for the G1/S transition in Saccharomyces cerevisiae promotes the understanding of cancer developmental mechanisms

, , , , &
Article: 2362842 | Received 03 Jan 2024, Accepted 29 May 2024, Published online: 22 Jun 2024

References

  • Bertoli C, Skotheim JM, de Bruin RAM. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14(8):518–528. doi: 10.1038/nrm3629.
  • Johnson A, Skotheim JM. Start and the restriction point. Curr Opin Cell Biol. 2013;25(6):717–723. doi: 10.1016/j.ceb.2013.07.010.
  • Roufayel R, Mezher R, Storey KB. The role of retinoblastoma protein in cell cycle regulation: an updated review. Curr Mol Med. 2021;21(8):620–629. doi: 10.2174/1566524020666210104113003.
  • Delston RB, Harbour JW. Rb at the interface between cell cycle and apoptotic decisions. Curr Mol Med. 2006;6(7):713–718. doi: 10.2174/1566524010606070713.
  • Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018;25(1):114–132. doi: 10.1038/cdd.2017.172.
  • Barr AR, Cooper S, Heldt FS, et al. DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nat Commun. 2017;8(1):14728. doi: 10.1038/ncomms14728.
  • Engeland K. Cell cycle regulation: p53-p21-Rb signaling. Cell Death Differ. 2022;29(5):946–960. doi: 10.1038/s41418-022-00988-z.
  • Li Y, Li S, Shi X, et al. KLF12 promotes the proliferation of breast cancer cells by reducing the transcription of p21 in a p53-dependent and p53-independent manner. Cell Death Dis. 2023;14(5):313. doi: 10.1038/s41419-023-05824-x.
  • Wu JY, Chien YC, Tsai IC, et al. Capsanthin induces G1/S phase arrest, erlotinib-sensitivity and inhibits tumor progression by suppressing EZH2-mediated epigenetically silencing of p21 in triple-negative breast cancer cells. Aging (Albany NY). 2021;13(9):12514–12525. doi: 10.18632/aging.202925.
  • Hartwell LH, Culotti J, Pringle JR, et al. Genetic control of the cell division cycle in yeast. Science. 1974;183(4120):46–51. doi: 10.1126/science.183.4120.46.
  • Nurse P, Thuriaux P, Nasmyth K. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1976;146(2):167–178. doi: 10.1007/BF00268085.
  • Evans T, Rosenthal ET, Youngblom J, et al. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell. 1983;33(2):389–396. doi: 10.1016/0092-8674(83)90420-8.
  • Ren P, Malik A, Zeng F. Identification of YPL014W (Cip1) as a novel negative regulator of cyclin-dependent kinase in Saccharomyces cerevisiae. Genes Cells. 2016;21(6):543–552. doi: 10.1111/gtc.12361.
  • Zhang Z, Ren P, Vashisht AA, et al. Cdk1-interacting protein Cip1 is regulated by the S transition in response to genotoxic stress. Genes Cells. 2017;22(10):850–860. doi: 10.1111/gtc.12518.
  • Chang Y-L, Tseng S-F, Huang Y-C, et al. Yeast Cip1 is activated by environmental stress to inhibit Cdk1-G1 cyclins via Mcm1 and Msn2/4. Nat Commun. 2017;8(1):56. doi: 10.1038/s41467-017-00080-y.
  • Al-Rawi A, Kaye E, Korolchuk S, et al. Cyclin a and Cks1 promote kinase consensus switching to non-proline-directed CDK1 phosphorylation. Cell Rep. 2023;42(3):112139. doi: 10.1016/j.celrep.2023.112139.
  • Enserink JM, Chymkowitch P. Cell cycle-dependent transcription: the cyclin dependent kinase Cdk1 is a direct regulator of basal transcription machineries. Int J Mol Sci. 2022;23(3):1293. doi: 10.3390/ijms23031293.
  • Lanker S, Valdivieso MH, Wittenberg C. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science. 1996;271(5255):1597–1601. doi: 10.1126/science.271.5255.1597.
  • Ross KE, Kaldis P, Solomon MJ. Activating phosphorylation of the Saccharomyces cerevisiae cyclin-dependent kinase, cdc28p, precedes cyclin binding. Mol Biol Cell. 2000;11(5):1597–1609. doi: 10.1371/journal.pgen.1002851.
  • Kaldis P, Pitluk ZW, Bany IA, et al. Localization and regulation of the CDK-activating kinase (Cak1p) from budding yeast. J Cell Sci. 1998;111(24):3585–3596. doi: 10.1242/jcs.111.24.3585.
  • Kurreck J, Stein CA. Molecular medicine: an introduction. Weinheim: Wiley-VCH Verlag GmbH and Co. KGaA; 2016. p. 9.
  • Li P, Liu X, Hao Z, et al. Dual repressive function by Cip1, a budding yeast analog of p21, in cell-cycle START regulation. Front Microbiol. 2020;11:1623. doi: 10.3389/fmicb.2020.01623.
  • Kishkevich A, Cooke SL, Harris MRA, et al. Gcn5 and Rpd3 have a limited role in the regulation of cell cycle transcripts during the G1 and S phases in Saccharomyces cerevisiae. Sci Rep. 2019;9(1):10686. doi: 10.1038/s41598-019-47170-z.
  • Stephan OOH. Interactions, structural aspects and evolutionary perspectives of the yeast ‘START’-regulatory network. FEMS Yeast Res. 2022;22(1):foab064. doi: 10.1093/femsyr/foab064.
  • Black L, Tollis S, Fu G, et al. G1/S transcription factors assemble in increasing numbers of discrete clusters through G1 phase. J Cell Biol. 2020;219(9):e202003041. doi: 10.1083/jcb.202003041.
  • Simon I, Barnett J, Hannett N, et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell. 2001;106(6):697–708. doi: 10.1016/S0092-8674(01)00494-9.
  • Tollis S, Singh J, Palou R, et al. The microprotein Nrs1 rewires the G1/S transcriptional machinery during nitrogen limitation in budding yeast. PLoS Biol. 2022;20(3):e3001548. doi: 10.1371/journal.pbio.3001548.
  • Sheu Y, Kawaguchi RK, Gillis J, et al. Prevalent and dynamic binding of the cell cycletransition kinase Rad53 to gene promoters. eLife. 2022;11:e84320. doi: 10.7554/eLife.84320.
  • Bean JM, Siggia ED, Cross FR. High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics. 2005;171(1):49–61. doi: 10.1534/genetics.105.044560.
  • De Bruin RAM, Kalashnikova TI, Chahwan C, et al. Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol Cell. 2006;23(4):483–496. doi: 10.1016/j.molcel.2006.06.025.
  • Dirick L, Böhm T, Nasmyth K. Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. Embo J. 1995;14(19):4803–4813. doi: 10.1002/j.1460-2075.1995.tb00162.x.
  • Stuart D, Wittenberg C. CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev. 1995;9(22):2780–2794. doi: 10.1101/gad.9.22.2780.
  • Wang H, Garí E, Vergés E, et al. Recruitment of Cdc28 by Whi3 restricts nuclear accumulation of the G1 cyclin-Cdk complex to late G1. Embo J. 2004;23(1):180–190. doi: 10.1038/sj.emboj.7600022.
  • Palumbo P, Vanoni M, Cusimano V, et al. Whi5 phosphorylation embedded in the G1/S network dynamically controls critical cell size and cell fate. Nat Commun. 2016;7(1):11372. doi: 10.1038/ncomms11372.
  • Wagner MV, Smolka MB, de Bruin RA, et al. Whi5 regulation by site specific CDK-phosphorylation in Saccharomyces cerevisiae. PLoS One. 2009;4(1):e4300. doi: 10.1371/journal.pone.0004300.
  • Charvin G, Oikonomou C, Siggia ED, et al. Origin of irreversibility of cell cycle start in budding yeast. PLoS Biol. 2010;8(1):e1000284. doi: 10.1371/journal.pbio.1000284.
  • Eser U, Falleur-Fettig M, Johnson A, et al. Commitment to a cellular transition precedes genome-wide transcriptional change. Mol Cell. 2011;43(4):515–527. doi: 10.1016/j.molcel.2011.06.024.
  • Skotheim JM, Di Talia S, Siggia ED, et al. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature. 2008;454(7202):291–296. doi: 10.1038/nature07118.
  • Travesa A, Kalashnikova TI, de Bruin RAM, et al. Repression of G1/S transcription is mediated via interaction of the GTB motifs of Nrm1 and Whi5 with Swi6. Mol Cell Biol. 2013;33(8):1476–1486. doi: 10.1128/MCB.01333-12.
  • Yahya G, Parisi E, Flores A, et al. A Whi7-anchored loop controls the G1 cdk-cyclin complex at start. Mol Cell. 2014;53(1):115–126. doi: 10.1016/j.molcel.2013.11.015.
  • Gomar-Alba M, Méndez E, Quilis I, et al. Whi7 is an unstable cell-cycle repressor of the start transcriptional program. Nat Commun. 2017;8(1):329. doi: 10.1038/s41467-017-00374-1.
  • Ros-Carrero C, Spiridon-Bodi M, Igual JC, et al. The CDK Pho85 inhibits Whi7 start repressor to promote cell cycle entry in budding yeast. EMBO Rep. 2024;25(2):745–769. doi: 10.1038/s44319-023-00049-7.
  • Schmoller KM, Turner JJ, Kõivomägi M, et al. Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size. Nature. 2015;526(7572):268–272. doi: 10.1038/nature14908.
  • Ferrezuelo F, Colomina N, Palmisano A, et al. The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nat Commun. 2012;3(1):1012. doi: 10.1038/ncomms2015.
  • Wang H, Carey LB, Cai Y, et al. Recruitment of Cln3 cyclin to promoters controls cell cycle entry via histone deacetylase and other targets. PLoS Biol. 2009;7(9):e1000189. doi: 10.1371/journal.pbio.1000189.
  • Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012;192(1):73–105. doi: 10.1534/genetics.111.135731.
  • Jorgensen P, Tyers M. How cells coordinate growth and division. Curr Biol. 2004;14(23):R1014–R1027. doi: 10.1016/j.cub.2004.11.027.
  • Lowndes NF, Johnson AL, Breeden L, et al. Swi6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature. 1992;357(6378):505–508. doi: 10.1038/357505a0.
  • Primig M, Sockanathan S, Auer H, et al. Anatomy of a transcription factor important for the start of the cell cycle in Saccharomyces cerevisiae. Nature. 1992;358(6387):593–597. doi: 10.1038/358593a0.
  • Costanzo M, Nishikawa JL, Tang X, et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell. 2004;117(7):899–913. doi: 10.1016/j.cell.2004.05.024.
  • McInerny CJ, Partridge JF, Mikesell GE, et al. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 1997;11(10):1277–1288. doi: 10.1101/gad.11.10.1277.
  • Flick K, Chapman-Shimshoni D, Stuart D, et al. Regulation of cell size by glucose is exerted via repression of the CLN1 promoter. Mol Cell Biol. 1998;18(5):2492–2501. doi: 10.1128/MCB.18.5.2492.
  • Dorsey S, Tollis S, Cheng J, et al. G1/S transcription factor copy number is a growth-dependent determinant of cell cycle commitment in yeast. Cell Syst. 2018;6(5):539–554.e11. doi: 10.1016/j.cels.2018.04.012.
  • Tollis S, Singh J, Thattikota Y, et al. Nsr1, a nitrogen source-regulated microprotein, confers an alternative mechanism of G1/S transcriptional activation in budding yeast. bioRxiv. 2020. doi: 10.1101/2020.04.20.033787.
  • Hendler A, Medina EM, Buchler NE, et al. The evolution of a G1/S transcriptional network in yeasts. Curr Genet. 2018;64(1):81–86. doi: 10.1007/s00294-017-0726-3.
  • Manukyan A, Zhang J, Thippeswamy U, et al. Ccr4 alters cell size in yeast by modulating the timing of CLN1 and CLN2 expression. Genetics. 2008;179(1):345–357. doi: 10.1534/genetics.108.086744.
  • Li P, Hao Z, Zeng F. Tumor suppressor stars in yeast G1/S transition. Curr Genet. 2021;67(2):207–212. doi: 10.1007/s00294-020-01126-3.
  • Miles S, Breeden L. A common strategy for initiating the transition from proliferation to quiescence. Curr Genet. 2017;63(2):179–186. doi: 10.1007/s00294-016-0640-0.
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705. doi: 10.1016/j.cell.2007.02.005.
  • Montanari A, Leo M, De Luca V, et al. Gcn5 histone acetyltransferase is present in the mitoplasts. Biol Open. 2019;8(2):bio041244. doi: 10.1242/bio.041244.
  • Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell. 1998;92(4):463–473. doi: 10.1016/s0092-8674(00)80940-x.
  • Huang D, Kaluarachchi S, van Dyk D, et al. Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast. PLoS Biol. 2009;7(9):e1000188. doi: 10.1371/journal.pbio.1000188.
  • Miles S, Croxford MW, Abeysinghe AP, et al. Msa1 and Msa2 modulate G1-specific transcription to promote G1 arrest and the transition to quiescence in budding yeast. PLoS Genet. 2016;12(6):e1006088. doi: 10.1371/journal.pgen.1006088.
  • Lam EW, La Thangue NB. DP and E2F proteins: coordinating transcription with cell cycle progression. Curr Opin Cell Biol. 1994;6(6):859–866. doi: 10.1016/0955-0674(94)90057-4.
  • Slansky JE, Farnham PJ. Introduction to the E2F family: protein structure and gene regulation. Curr Top Microbiol Immunol. 1996;208:1–30. doi: 10.1007/978-3-642-79910-5_1.
  • Fischer M, Schade AE, Branigan TB, et al. Coordinating gene expression during the cell cycle. Trends Biochem. Sci. 2022;47(12):1009–1022. doi: 10.1016/j.tibs.2022.06.007.
  • Zatulovskiy E, Zhang S, Berenson DF, et al. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 2020;369(6502):466–471. doi: 10.1126/science.aaz6213.
  • Medina EM, Turner JJ, Gordân R, et al. Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi. eLife. 2016;5:e09492. doi: 10.7554/eLife.09492.
  • Fischer M, Grossmann P, Padi M, et al. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks. Nucleic Acids Res. 2016;44(13):6070–6086. doi: 10.1093/nar/gkw523.
  • Cooper K. Rb, whi it’s not just for metazoans anymore. Oncogene. 2006;25(38):5228–5232. doi: 10.1038/sj.onc.1209630.
  • Zhang S, Valenzuela LF, Zatulovskiy E, et al. The G1/S transition is promoted by Rb degradation via the E3 ligase UBR5. bioRxiv. 2023. doi: 10.1101/2023.10.03.560768.
  • Müller L, Keil R, Hatzfeld M. Plakophilin 3 facilitates G1/S phase transition and enhances proliferation by capturing RB protein in the cytoplasm and promoting EGFR signaling. Cell Rep. 2023;42(1):112031. doi: 10.1016/j.celrep.2023.112031.
  • Wang H, Wang X, Xu L, et al. Integrated analysis of the E2F transcription factors across cancer types. Oncol Rep. 2020;43(4):1133–1146. doi: 10.3892/or.2020.7504.
  • Kassab A, Gupta I, Moustafa AA. Role of E2F transcription factor in oral cancer: recent insight and advancements. Semin Cancer Biol. 2023;92:28–41. doi: 10.1016/j.semcancer.2023.03.004.
  • Nakajima R, Zhao L, Zhou Y, et al. Deregulated E2F activity as a cancer-cell specific therapeutic tool. Genes (Basel). 2023;14(2):393. doi: 10.3390/genes14020393.
  • Hsu J, Arand J, Chaikovsky A, et al. E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nat Commun. 2019;10(1):2939. doi: 10.1038/s41467-019-10901-x.
  • Chang H, Song J, Wu J, et al. E2F transcription factor 8 promotes cell proliferation via CCND1/p21 in esophageal squamous cell carcinoma. Onco Targets Ther. 2018;11:8165–8173. doi: 10.2147/OTT.S180938.
  • Li J, Wang H, Cao F, et al. A bioinformatics analysis for diagnostic roles of the E2F family in esophageal cancer. J Gastrointest Oncol. 2022;13(5):2115–2131. doi: 10.21037/jgo-22-855.
  • Sun J, Shi R, Zhao S, et al. E2F8, a direct target of miR-144, promotes papillary thyroid cancer progression via regulating cell cycle. J Exp Clin Cancer Res. 2017;36(1):40. doi: 10.1186/s13046-017-0504-6.
  • Lee DY, Chun JN, Cho M, et al. Emerging role of E2F8 in human cancer. Biochim Biophys Acta Mol Basis Dis. 2023;1869(6):166745. doi: 10.1016/j.bbadis.2023.166745.
  • Schade AE, Fischer M, DeCaprio JA. RB, p130 and p107 differentially repress G1/S and G2/M genes after p53 activation. Nucleic Acids Res. 2019;47(21):11197–11208. doi: 10.1093/nar/gkz961.
  • Uxa S, Bernhart SH, Mages CFS, et al. DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Res. 2019;47(17):9087–9103. doi: 10.1093/nar/gkz635.
  • Schade AE, Oser MG, Nicholson HE, et al. Cyclin D-CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene. 2019;38(25):4962–4976. doi: 10.1038/s41388-019-0767-9.
  • Mages CF, Wintsche A, Bernhart SH, et al. The DREAM complex through its subunit Lin37 cooperates with Rb to initiate quiescence. eLife. 2017;6:e26876. doi: 10.7554/eLife.26876.
  • Fischer M. Conservation and divergence of the p53 gene regulatory network between mice and humans. Oncogene. 2019;38(21):4095–4109. doi: 10.1038/s41388-019-0706-9.
  • Hafner A, Bulyk ML, Jambhekar A, et al. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20(4):199–210. doi: 10.1038/s41580-019-0110-x.
  • Liu M, Liu H, Chen J. Mechanisms of the CDK4/6 inhibitor palbociclib (PD 0332991) and its future application in cancer treatment. Oncol Rep. 2018;39(3):901–911. doi: 10.3892/or.2018.6221.
  • Vijayaraghavan S, Moulder S, Keyomarsi K, et al. Inhibiting CDK in cancer therapy: current evidence and future directions. Target Oncol. 2018;13(1):21–38. doi: 10.1007/s11523-017-0541-2.
  • Turner NC, Ro J, André F, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209–219. doi: 10.1056/NEJMoa1505270.
  • Vilgelm AE, Saleh N, Shattuck-Brandt R, et al. MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21. Sci Transl Med. 2019;11(505):eaav7171. doi: 10.1126/scitranslmed.aav7171.
  • Cejuela M, Gil-Torralvo A, Castilla MÁ, et al. Abemaciclib, palbociclib, and ribociclib in real-world data: a direct comparison of first-line treatment for endocrine-receptor-positive metastatic breast cancer. Int J Mol Sci. 2023;24(10):8488. doi: 10.3390/ijms24108488.
  • Bisi JE, Sorrentino JA, Jordan JL, et al. Preclinical development of G1 T38: a novel, potent and selective inhibitor of cyclin dependent kinases 4/6 for use as an oral antineoplastic in patients with Cdk4/6 sensitive tumors. Oncotarget. 2017;8(26):42343–42358. doi: 10.18632/oncotarget.
  • Teh JLF, Cheng PF, Purwin TJ, et al. In vivo E2F reporting reveals efficacious schedules of MEK1/2-CDK4/6 targeting and mTOR-S6 resistance mechanisms. Cancer Discov. 2018;8(5):568–581. doi: 10.1158/2159-8290.CD-17-0699.
  • Kreis NN, Louwen F, Yuan J. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy. Cancers (Basel). 2019;11(9):11–1220. doi: 10.3390/cancers11091220.
  • Liu H, Liu K, Dong Z. The role of p21-activated kinases in cancer and beyond: where are we heading? Front Cell Dev Biol. 2021;9:641381. doi: 10.3389/fcell.2021.641381.
  • Shamloo B, Usluer S. p21 in cancer research. Cancers (Basel). 2019;11(8):1178. doi: 10.3390/cancers11081178.
  • Pérez-Tenorio G, Berglund F, Merca AE, et al. Cytoplasmic p21WAF1/CIP1 correlates with Akt activation and poor response to tamoxifen in breast cancer. Int J Oncol. 2006;28(5):1031–1042. doi: 10.3892/ijo.28.5.1031.
  • Zhang Z, Cao Y, Zhao W, et al. HDAC6 serves as a biomarker for the prognosis of patients with renal cell carcinoma. Cancer Biomark. 2017;19(2):169–175. doi: 10.3233/CBM-160298.
  • Zhang X, Ma Q, Wu H, et al. A review of progress in histone deacetylase 6 inhibitors research: structural specificity and functional diversity. J Med Chem. 2021;64(3):1362–1391. doi: 10.1021/acs.jmedchem.0c01782.
  • Sixto-López Y, Bello M, Rodríguez-Fonseca RA, et al. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations. J Biomol Struct Dyn. 2017;35(13):2794–2814. doi: 10.1080/07391102.2016.1231084.
  • Kukushkin AN, Svetlikova SB. Histone deacetylase HDAC6 inhibitor CAY10603 blocks G1/S of the cell cycle and promotes senescence of murine fibroblasts. Cell Tiss Biol. 2019;13(4):268–275. doi: 10.1134/S1990519X19040047.