35
Views
0
CrossRef citations to date
0
Altmetric
Review Article

An overview of the role of MMP-8 and ADAM-33 in bronchial asthma

, , &
Article: 2373855 | Received 31 Mar 2024, Accepted 24 Jun 2024, Published online: 11 Jul 2024

References

  • Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. doi: 10.3390/ijms21249739.
  • White JM. ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol. 2003;15(5):598–606.
  • Yoon HK, Cho HY, Kleeberger SR. Protective role of matrix metalloproteinase-9 in ozone-induced airway inflammation. Environ Health Perspect. 2007;115(11):1557–1563. doi: 10.1289/ehp.10289.
  • Bonfield TL, Swaisgood CM, Barna BP, et al. Elevated gelatinase activity in pulmonary alveolar proteinosis: role of macrophage-colony stimulating factor. J Leukoc Biol. 2006;79(1):133–139. doi: 10.1189/jlb.0805447.
  • Vandenbroucke RE, Dejonckheere E, Libert C. A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur Respir J. 2011;38(5):1200–1214. doi: 10.1183/09031936.00027411.
  • Davey A, McAuley DF, O'Kane CM. Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. Eur Respir J. 2011;38(4):959–970. doi: 10.1183/09031936.00032111.
  • Craig VJ, Zhang L, Hagood JS, et al. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585–600. doi: 10.1165/rcmb.2015-0020TR.
  • Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci. 2019;234(116786):116786. doi: 10.1016/j.lfs.2019.116786.
  • Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. Febs J. 2021;288(24):7162–7182. doi: 10.1111/febs.15701.
  • Luchian I, Goriuc A, Sandu D, et al. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci. 2022;23(3):1806. doi: 10.3390/ijms23031806.
  • Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008;29(5):258–289. doi: 10.1016/j.mam.2008.08.001.
  • Khalid U, Dimov D, Vlaykova T. Matrix metalloproteinases in COVID-19: underlying significance. Biotechnol Biotechnol Equip. 2023;37(1):295–301. doi: 10.1080/13102818.2023.2186137.
  • Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases. Cells. 2020;9(5):1076. doi: 10.3390/cells9051076.
  • Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem. 2007;15(6):2223–2268. doi: 10.1016/j.bmc.2007.01.011.
  • Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–839. doi: 10.1161/01.RES.0000070112.80711.3D.
  • Tallant C, Marrero A, Gomis-Rüth FX. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta. 2010;1803(1):20–28. doi: 10.1016/j.bbamcr.2009.04.003.
  • Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73. doi: 10.1016/bs.pmbts.2017.02.005.
  • Pei D, Kang T, Qi H. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem. 2000;275(43):33988–33997. doi: 10.1074/jbc.M006493200.
  • Trexler M, Briknarová K, Gehrmann M, et al. Peptide ligands for the fibronectin type II modules of matrix metalloproteinase 2 (MMP-2). J Biol Chem. 2003;278(14):12241–12246. doi: 10.1074/jbc.M210116200.
  • Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–573. doi: 10.1016/j.cardiores.2005.12.002.
  • Lagente V, Manoury B, Nénan S, et al. Role of matrix metalloproteinases in the development of airway inflammation and remodeling. Braz J Med Biol Res. 2005;38(10):1521–1530. doi: 10.1590/s0100-879x2005001000009.
  • Lindner D, Zietsch C, Becher PM, et al. Differential expression of matrix metalloproteases in human fibroblasts with different origins. Biochem Res Int. 2012;2012:875742–875710. doi: 10.1155/2012/875742.
  • Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, et al. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol. 2019;137:57–83. doi: 10.1016/j.critrevonc.2019.02.010.
  • Kapoor C, Vaidya S, Wadhwan V, et al. Seesaw of matrix metalloproteinases (MMPs). J Cancer Res Ther. 2016;12(1):28–35. doi: 10.4103/0973-1482.157337.
  • Kucukguven A, Khalil RA. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins. Curr Drug Targets. 2013;14(3):287–324. doi: 10.2174/138945013804998972.
  • Van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 2015;44-46:224–231. doi: 10.1016/j.matbio.2015.01.005.
  • Amălinei C, Căruntu ID, Bălan RA. Biology of metalloproteinases. Rom J Morphol Embryol. 2007;48(4):323–334.
  • Liu J, Khalil RA. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci. 2017;148:355–420. doi: 10.1016/bs.pmbts.2017.04.003.
  • Groft LL, Muzik H, Rewcastle NB, et al. Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas. Br J Cancer. 2001;85(1):55–63. PMID: 11437402; PMCID: PMC2363922. doi: 10.1054/bjoc.2001.1854.
  • Gardner J, Ghorpade A. Tissue inhibitor of metallo­proteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system. J Neurosci Res. 2003;74(6):801–806. doi: 10.1002/jnr.10835.
  • Huppertz B, Kertschanska S, Demir AY, et al. Immunohistochemistry of matrix metalloproteinases (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the human placenta. Cell Tissue Res. 1998;291(1):133–148. doi: 10.1007/s004410050987.
  • Olson MW, Gervasi DC, Mobashery S, et al. Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem. 1997;272(47):29975–29983. doi: 10.1074/jbc.272.47.29975.
  • Kudo T, Takino T, Miyamori H, et al. Substrate choice of membrane-type 1 matrix metalloproteinase is dictated by tissue inhibitor of metalloproteinase-2 levels. Cancer Sci. 2007;98(4):563–568. doi: 10.1111/j.1349-7006.2007.00426.x.
  • Kobusiak-Prokopowicz M, Krzysztofik J, Kaaz K, et al. MMP-2 and TIMP-2 in patients with heart failure and chronic kidney disease. Open Med (Wars). 2018;13(1):237–246. doi: 10.1515/med-2018-0037.
  • Dewing JM, Carare RO, Lotery AJ, et al. The diverse roles of TIMP-3: insights into degenerative diseases of the senescent retina and brain. Cells. 2019;9(1):39. doi: 10.3390/cells9010039.
  • Haddock G, Cross AK, Plumb J, et al. Expression of ADAMTS-1, -4, -5 and TIMP-3 in normal and multiple sclerosis CNS white matter. Mult Scler. 2006;12(4):386–396. doi: 10.1191/135248506ms1300oa.
  • Fan D, Kassiri Z. Biology of tissue inhibitor of metalloproteinase 3 (TIMP3), and its therapeutic implications in cardiovascular pathology. Front Physiol. 2020; 11:661. doi: 10.3389/fphys.2020.00661.
  • Su S, Grover J, Roughley PJ, et al. Expression of the tissue inhibitor of metalloproteinases (TIMP) gene family in normal and osteoarthritic joints. Rheumatol Int. 1999;18(5-6):183–191. doi: 10.1007/s002960050083.
  • Huang W, Li WQ, Dehnade F, et al. Tissue inhibitor of metalloproteinases-4 (TIMP-4) gene expression is increased in human osteoarthritic femoral head cartilage. J Cell Biochem. 2002;85(2):295–303. doi: 10.1002/jcb.10138.
  • Laronha H, Carpinteiro I, Portugal J, et al. Challenges in matrix metalloproteinases inhibition. Biomolecules. 2020;10(5):717. doi: 10.3390/biom10050717.
  • Mannello F, Medda V. Nuclear localization of matrix metalloproteinases. Prog Histochem Cytochem. 2012;47(1):27–58. doi: 10.1016/j.proghi.2011.12.002.
  • Nuti E, Tuccinardi T, Rossello A. Matrix metalloproteinase inhibitors: new challenges in the era of post broad-spectrum inhibitors. Curr Pharm Des. 2007;13(20):2087–2100. doi: 10.2174/138161207781039706.
  • Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells. 2020;9(5):1313. doi: 10.3390/cells9051313.
  • Mohammed FF, Smookler DS, Khokha R. Metalloproteinases, inflammation, and rheumatoid arthritis. Ann Rheum Dis. 2003;62 Suppl 2(Suppl 2):ii43–7. doi: 10.1136/ard.62.suppl_2.ii43.
  • Araki Y, Mimura T. Matrix MetalloproteinaseGene activation resulting from disordred epigenetic mechanisms in rheumatoid arthritis. Int J Mol Sci. 2017;18(5):905. doi: 10.3390/ijms18050905.
  • Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol. 2018;73:34–51. doi: 10.1016/j.matbio.2018.01.018.
  • Houghton AM. Matrix metalloproteinases in destructive lung disease. Matrix Biol. 2015;46:167–174.
  • Oriano M, Amati F, Gramegna A, et al. Protease-Antiprotease Imbalance in Bronchiectasis. Int J Mol Sci. 2021;22(11):5996. doi: 10.3390/ijms22115996.
  • Zhou F, Shi LB, Zhang SY. Ovarian fibrosis: a phenomenon of concern. Chin Med J (Engl). 2017;130(3):365–371. doi: 10.4103/0366-6999.198931.
  • McKelvey MC, Weldon S, McAuley DF, et al. Targeting proteases in cystic fibrosis lung disease. Paradigms, progress, and potential. Am J Respir Crit Care Med. 2020;201(2):141–147. doi: 10.1164/rccm.201906-1190PP.
  • Saha N, Robev D, Himanen JP, et al. ADAM proteases: emerging role and targeting of the non-catalytic domains. Cancer Lett. 2019;467:50–57. doi: 10.1016/j.canlet.2019.10.003.
  • Seegar TC, Blacklow SC. Domain integration of ADAM family proteins: emerging themes from structural studies. Exp Biol Med (Maywood). 2019;244(17):1510–1519. doi: 10.1177/1535370219865901.
  • Zhong S, Khalil RA. A Disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Biochem Pharmacol. 2019;164:188–204. doi: 10.1016/j.bcp.2019.03.033.
  • Giebeler N, Zigrino P. A Disintegrin and metalloprotease (ADAM): historical overview of their functions. Toxins (Basel). 2016;8(4):122. doi: 10.3390/toxins8040122.
  • Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol. 2005;6(1):32–43. doi: 10.1038/nrm1548.
  • Rocks N, Paulissen G, El Hour M, et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008;90(2):369–379. doi: 10.1016/j.biochi.2007.08.008.
  • Łukaszewicz-Zając M, Pączek S, Mroczko B. A Disintegrin and Metalloproteinase (ADAM) Family-Novel Biomarkers of Selected Gastrointestinal (GI) Malignancies? Cancers (Basel). 2022;14(9):2307. doi: 10.3390/cancers14092307.
  • Dreymueller D, Uhlig S, Ludwig A. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol. 2015;308(4):5.
  • Paulissen G, Rocks N, Gueders MM, et al. Role of ADAM and ADAMTS metalloproteinases in airway diseases. Respir Res. 2009;10(1):127. doi: 10.1186/1465-9921-10-127.
  • Suh J, Choi SH, Romano DM, et al. ADAM10 missense mutations potentiate Î2-amyloid accumulation by impairing prodomain chaperone function. Neuron. 2013;80(2):385–401. doi: 10.1016/j.neuron.2013.08.035.
  • Wisniewska M, Goettig P, Maskos K, et al. Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. J Mol Biol. 2008;381(5):1307–1319. doi: 10.1016/j.jmb.2008.06.088.
  • Kim SH, Uuganbayar U, Trinh HKT, et al. Evaluation of neutrophil activation status according to the phenotypes of adult asthma. Allergy Asthma Immunol Res. 2019;11(3):381–393. doi: 10.4168/aair.2019.11.3.381.
  • Gharib SA, Altemeier WA, Van Winkle LS, et al. Matrix metalloproteinase-7 coordinates airway epithelial injury response and differentiation of ciliated cells. Am J Respir Cell Mol Biol. 2013;48(3):390–396. doi: 10.1165/rcmb.2012-0083OC.
  • Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131(13):1541–1558. doi: 1510.1042/CS20160487.
  • Liu L, Stephens B, Bergman M, et al. Role of collagen in airway mechanics. Bioengineering. 2021;8(1):13. doi: 10.3390/bioengineering8010013.
  • Ito JT, Lourenço JD, Righetti RF, et al. Extracellular matrix component remodeling in respiratory diseases: what has been found in clinical and experimental studies? Cells. 2019;8(4):342. doi: 10.3390/cells8040342.
  • Pohunek P, Warner JO, Turzíková J, et al. Markers of eosinophilic inflammation and tissue re-modelling in children before clinically diagnosed bronchial asthma. Pediatr Allergy Immunol. 2005;16(1):43–51. doi: 10.1111/j.1399-3038.2005.00239.x.
  • Slats AM, Janssen K, van Schadewijk A, et al. Expression of smooth muscle and extracellular matrix proteins in relation to airway function in asthma. J Allergy Clin Immunol. 2008;121(5):1196–1202. doi: 10.1016/j.jaci.2008.02.017.
  • Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19(1):34–41. doi: 10.1016/j.semcdb.2007.07.003.
  • Bajbouj K, Ramakrishnan RK, Hamid Q. Role of matrix metalloproteinases in angiogenesis and its implications in asthma. J Immunol Res. 2021;2021(6645072):6645072–6645012. doi: 10.1155/2021/6645072.
  • Gueders MM, Balbin M, Rocks N, et al. Matrix metalloproteinase-8 deficiency promotes granulocytic allergen-induced airway inflammation. J Immunol. 2005;175(4):2589–2597. doi: 10.4049/jimmunol.175.4.2589.
  • Prikk K, Maisi P, Pirilä E, et al. Airway obstruction correlates with collagenase-2 (MMP-8) expression and activation in bronchial asthma. Lab Invest. 2002;82(11):1535–1545. doi: 10.1097/01.lab.0000035023.53893.b6.
  • Bissonnette EY, Madore AM, Chakir J, et al. Fibroblast growth factor-2 is a sputum remodeling biomarker of severe asthma. J Asthma. 2014;51(2):119–126. doi: 10.3109/02770903.2013.860164.
  • Hinks TSC, Brown T, Lau LCK, et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3-like protein 1. J Allergy Clin Immunol. 2016;138(1):61–75. doi: 10.1016/j.jaci.2015.11.020.
  • Prikk K, Maisi P, Pirilä E, et al. In vivo collagenase-2 (MMP-8) expression by human bronchial epithelial cells and monocytes/macrophages in bronchiectasis. J Pathol. 2001;194(2):232–238. doi: 10.1002/path.849.
  • Hu H, Cai C, Xue M, et al. Increased MMP8 levels in atopic chronic obstructive pulmonary disease: a study testing multiple immune factors in atopic and non-atopic patients. Int J Chron Obstruct Pulmon Dis. 2020;15:1839–1848. doi: 10.2147/COPD.S263313.
  • Elliot JG, Noble PB, Mauad T, et al. Inflammation-dependent and independent airway remodelling in asthma. Respirology. 2018;23(12):1138–1145. doi: 10.1111/resp.13360.
  • Fajt ML, Wenzel SE. Development of new therapies for severe asthma. Allergy Asthma Immunol Res. 2017;9(1):3–14. doi: 10.4168/aair.2017.9.1.3.
  • Shimoda T, Obase Y, Kishikawa R, et al. Association of matrix metalloproteinase 8 genetic polymorphisms with bronchial asthma in a Japanese population. Allergy Rhinol. 2013;4(3):0063.
  • Brand KH, Ahout IM, de Groot R, et al. Use of MMP-8 and MMP-9 to assess disease severity in children with viral lower respiratory tract infections. J Med Virol. 2012;84(9):1471–1480. doi: 10.1002/jmv.23301.
  • Fiotti N, Mearelli F, Di Girolamo FG, et al. Genetic variants of matrix metalloproteinase and sepsis: the need speed study. Biomolecules. 2022;12(2):279. doi: 10.3390/biom12020279.
  • Wang K, Zhou Y, Li G, et al. MMP8 and MMP9 gene polymorphisms were associated with breast cancer risk in a Chinese Han population. Sci Rep. 2018;8(1):13422. doi: 10.1038/s41598-018-31664-3.
  • Tai J, Sun D, Wang X, et al. Matrix metalloproteinase-8 rs11225395 polymorphism correlates with colorectal cancer risk and survival in a Chinese Han population: a case-control study. Aging (Albany NY). 2020;12(19):19618–19627. doi: 10.18632/aging.103930.
  • Moskalenko MI, Milanova SN, Ponomarenko IV, et al. [Study of associations of polymorphism of matrix metalloproteinases genes with the development of arterial hypertension in men]. Kardiologiia. 2019;59(7S):31–39. doi: 10.18087/cardio.2598.
  • Sleziak J, Gawor A, Błażejewska M, et al. ADAM33's role in asthma pathogenesis: an overview. Int J Mol Sci. 2024;25(4):2318. doi: 10.3390/ijms25042318.
  • Davies DE. The role of the epithelium in airway remodeling in asthma. Proc Am Thorac Soc. 2009;6(8):678–682. doi: 10.1513/pats.200907-067DP.
  • Haitchi HM, Powell RM, Shaw TJ, et al. ADAM33 expression in asthmatic airways and human embryonic lungs. Am J Respir Crit Care Med. 2005;171(9):958–965. doi: 10.1164/rccm.200409-1251OC.
  • Bijanzadeh M, Mahesh PA, Ramachandra NB. An understanding of the genetic basis of asthma. Indian J Med Res. 2011;134(2):149–161.
  • Holgate ST, Davies DE, Murphy G, et al. ADAM 33: just another asthma gene or a breakthrough in understanding the origins of bronchial hyperresponsiveness? Thorax. 2003;58(6):466–469. doi: 10.1136/thorax.58.6.466.
  • Tripathi P, Awasthi S, Gao P. ADAM metallopeptidase domain 33 (ADAM33): a promising target for asthma. Mediators Inflamm. 2014;2014(572025):572025–572028. doi: 10.1155/2014/572025.
  • Yang Y, Haitchi HM, Cakebread J, et al. Epigenetic mechanisms silence a disintegrin and metalloprotease 33 expression in bronchial epithelial cells. J Allergy Clin Immunol. 2008;121(6):1393–1399.e14. doi: 10.1016/j.jaci.2008.02.031.
  • van Diemen CC, Postma DS, Vonk JM, et al. A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med. 2005;172(3):329–333. doi: 10.1164/rccm.200411-1486OC.
  • Jongepier H, Boezen HM, Dijkstra A, et al. Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin Exp Allergy. 2004;34(5):757–760. doi: 10.1111/j.1365-2222.2004.1938.x.
  • Chiang CH, Lin MW, Chung MY, et al. The association between the IL-4, ADRÎ22 and ADAM 33 gene polymorphisms and asthma in the Taiwanese population. J Chin Med Assoc. 2012;75(12):635–643. doi: 10.1016/j.jcma.2012.08.012.
  • Al-Khayyat AI, Al-Anazi M, Warsy A, et al. T1 and T2 ADAM33 single nucleotide polymorphisms and the risk of childhood asthma in a Saudi Arabian population: a pilot study. Ann Saudi Med. 2012;32(5):479–486. doi: 10.5144/0256-4947.2012.479.
  • Saba N, Yusuf O, Rehman S, et al. Single nucleotide polymorphisms in asthma candidate genes TBXA2R, ADAM33 FCER1B and ORMDL3 in Pakistani asthmatics a case control study. Asthma Res Pract. 2018;4(4):4.
  • Sultana S, Banerjee P, Ganai I, et al. Polymorphism in ADAM33 gene associated with asthmatics in West Bengal, India - An investigation by in-silico analysis. World Allergy Organ J. 2023;16(11):100834. doi: 10.1016/j.waojou.2023.100834.
  • Karimi MR, Faridhosseini R, Abbaszadegan MR, et al. Association of ADAM33 gene polymorphisms with allergic asthma. Iran J Basic Med Sci. 2014;17(9):716–721.
  • Shen B, Lin R, Wang CC, et al. ADAM33 gene polymorphisms identified to be associated with asthma in a Chinese Li population. Biomed Rep. 2017;6(3):323–328. doi: 10.3892/br.2017.854.
  • Tripathi P, Awasthi S, Prasad R, et al. Association of ADAM33 gene polymorphisms with adult-onset asthma and its severity in an Indian adult population. J Genet. 2011;90(2):265–273. doi: 10.1007/s12041-011-0073-y.
  • Sun FJ, Zou LY, Tong DM, et al. Association between ADAM metallopeptidase domain 33 gene polymorphism and risk of childhood asthma: a meta-analysis. Braz J Med Biol Res. 2017;50(10):e6148. doi: 10.1590/1414-431X20176148.
  • Zheng W, Wang L, Su X, et al. Association between V4 polymorphism in the ADAM33 gene and asthma risk: a meta-analysis. Genet Mol Res. 2015;14(1):989–999. doi: 10.4238/2015.February.6.2.
  • Liang S, Wei X, Gong C, et al. A disintegrin and metalloprotease 33 (ADAM33) gene polymorphisms and the risk of asthma: a meta-analysis. Hum Immunol. 2013;74(5):648–657. doi: 10.1016/j.humimm.2013.01.025.
  • Lind DL, Choudhry S, Ung N, et al. ADAM33 is not associated with asthma in Puerto Rican or Mexican populations. Am J Respir Crit Care Med. 2003;168(11):1312–1316. doi: 10.1164/rccm.200306-877OC.
  • Wang P, Liu QJ, Li JS, et al. Lack of association between ADAM33 gene and asthma in a Chinese population. Int J Immunogenet. 2006;33(4):303–306. doi: 10.1111/j.1744-313X.2006.00617.x.
  • Thongngarm T, Jameekornrak A, Chaiyaratana N, et al. Effect of gene polymorphisms in ADAM33, TGFОІ1, VEGFA, and PLAUR on asthma in Thai population. Asian Pac J Allergy Immunol. 2022;40(1):39–46.
  • Thongngarm T, Jameekornrak A, Limwongse C, et al. Association between ADAM33 polymorphisms and asthma in a Thai population. Asian Pac J Allergy Immunol. 2008;26(4):205–211.
  • Song GG, Kim JH, Lee YH. Association between ADAM33 S2 and ST + 4 polymorphisms and susceptibility to asthma: a meta-analysis. Gene. 2013;524(1):72–78. doi: 10.1016/j.gene.2013.04.023.
  • Liu Y, Wang ZH, Zhen W, et al. Association between genetic polymorphisms in the ADAM33 gene and asthma risk: a meta-analysis. DNA Cell Biol. 2014;33(11):793–801. doi: 10.1089/dna.2013.2284.
  • Tripathi P, Awasthi S, Husain N, et al. Increased ex­pression of ADAM33 protein in asthmatic patients as compared to non-asthmatic controls. Indian J Med Res. 2013;137(3):507–514.
  • Mahesh PA. Unravelling the role of ADAM 33 in asthma. Indian J Med Res. 2013;137(3):447–450.
  • Simpson A, Maniatis N, Jury F, et al. Polymorphisms in a disintegrin and metalloprotease 33 (ADAM33) predict impaired early-life lung function. Am J Respir Crit Care Med. 2005;172(1):55–60. doi: 10.1164/rccm.200412-1708OC.
  • Davies ER, Kelly JF, Howarth PH, et al. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life. JCI Insight. 2016;1(11):87632. doi: 10.1172/jci.insight.87632.