1,253
Views
4
CrossRef citations to date
0
Altmetric
Articles

Wasserstein distance-based probabilistic linguistic TODIM method with application to the evaluation of sustainable rural tourism potential

ORCID Icon, , ORCID Icon, &
Pages 409-437 | Received 07 Aug 2020, Accepted 16 Feb 2021, Published online: 18 Mar 2021

References

  • Alemi-Ardakani, M., Milani, A. S., Yannacopoulos, S., & Shokouhi, G. (2016). On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimisation of composites. Expert Systems with Applications, 46, 426–438. https://doi.org/10.1016/j.eswa.2015.11.003
  • Alinezhad, A., & Khalili, J. (2019). New methods and applications in multiple attribute decision making (MADM). Springer.
  • Bai, C., Zhang, R., Qian, L., & Wu, Y. (2017). Comparisons of probabilistic linguistic term sets for multi-criteria decision making. Knowledge-Based Systems, 119, 284–291. https://doi.org/10.1016/j.knosys.2016.12.020
  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763–770. https://doi.org/10.1016/0305-0548(94)00059-H
  • Feng, X., Liu, Q., & Wei, C. (2019). Probabilistic linguistic QUALIFLEX approach with possibility degree comparison. Journal of Intelligent & Fuzzy Systems, 36(1), 719–730. https://doi.org/10.3233/JIFS-172112
  • Fu, C., Xu, D. L., & Xue, M. (2018). Determining attribute weights for multiple attribute decision analysis with discriminating power in belief distributions. Knowledge-Based Systems, 143, 127–141. https://doi.org/10.1016/j.knosys.2017.12.009
  • Gao, J., & Wu, B. (2017). Revitalising traditional villages through rural tourism: A case study of Yuanjia Village, Shaanxi Province, China. Tourism Management, 63, 223–233. https://doi.org/10.1016/j.tourman.2017.04.003
  • Gomes, L. F. A. M., & Lima, M. M. P. P. (1992). TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Foundations of Computing and Decision Sciences, 16(4), 113–127.
  • Gou, X., & Xu, Z. (2016). Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and probabilistic linguistic term sets. Information Sciences, 372, 407–427. https://doi.org/10.1016/j.ins.2016.08.034
  • Gou, X., Xu, Z., & Liao, H. (2017). Multiple criteria decision making based on Bonferroni means with hesitant fuzzy linguistic information. Soft Computing, 21(21), 6515–6529. https://doi.org/10.1007/s00500-016-2211-1
  • Griesiene, I., & Georgeta, C. P. (2017). Sustainable tourism development in the rural areas. Transformations in Business & Economics, 16(3), 42.
  • He, Y., Lei, F., Wei, G., Wang, R., & Wei, C. (2019). EDAS method for multiple attribute group decision making with probabilistic uncertain linguistic information and its application to green supplier selection. International Journal of Computational Intelligence Systems, 12(2), 1361–1370.
  • Herrera, F., & Herrera-Viedma, E. (2000). Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets and Systems, 115(1), 67–82. https://doi.org/10.1016/S0165-0114(99)00024-X
  • Lane, B. (1994). What is rural tourism? Journal of Sustainable Tourism, 2(1–2), 7–21. https://doi.org/10.1080/09669589409510680
  • Lei, F., Wei, G., Gao, H., Wu, J., & Wei, C. (2020). TOPSIS method for developing supplier selection with probabilistic linguistic information. International Journal of Fuzzy Systems, 22(3), 749–759. https://doi.org/10.1007/s40815-019-00797-6
  • Lei, F., Wei, G., Lu, J., Wu, J., & Wei, C. (2019). GRA method for probabilistic linguistic multiple attribute group decision making with incomplete weight information and its application to waste incineration plants location problem. International Journal of Computational Intelligence Systems, 12(2), 1547–1556.
  • Li, P., Liu, J., & Wei, C. (2020). Factor relation analysis for sustainable recycling partner evaluation using probabilistic linguistic DEMATEL. Fuzzy Optimisation and Decision Making, 19(4), 471–497. https://doi.org/10.1007/s10700-020-09326-9
  • Li, P., Liu, J., Yang, Y., & Wei, C. (2020). Evaluation of poverty-stricken families in rural areas using a novel case-based reasoning method for probabilistic linguistic term sets. Computers & Industrial Engineering, 147, 106658. https://doi.org/10.1016/j.cie.2020.106658
  • Liang, W., Luo, S., & Zhao, G. (2019). Evaluation of cleaner production for gold mines employing a hybrid multi-criteria decision making approach. Sustainability, 11(1), 146. https://doi.org/10.3390/su11010146
  • Liao, H., Mi, X., & Xu, Z. (2020). A survey of decision-making methods with probabilistic linguistic information: bibliometrics, preliminaries, methodologies, applications and future directions. Fuzzy Optimisation and Decision Making, 19(1), 81–134. https://doi.org/10.1007/s10700-019-09309-5
  • Lin, M., Chen, Z., Liao, H., & Xu, Z. (2019). ELECTRE II method to deal with probabilistic linguistic term sets and its application to edge computing. Nonlinear Dynamics, 96(3), 2125–2143. https://doi.org/10.1007/s11071-019-04910-0
  • Lipman, Y., Puente, J., & Daubechies, I. (2013). Conformal Wasserstein distance: II. Computational Aspects and Extensions. Mathematics of Computation, 82(281), 331–381.
  • Liu, P., & You, X. (2017). Probabilistic linguistic TODIM approach for multiple attribute decision-making. Granular Computing, 2(4), 333–342. https://doi.org/10.1007/s41066-017-0047-4
  • Liu, X., Wang, Z., Zhang, S., & Liu, J. (2020). Probabilistic hesitant fuzzy multiple attribute decision-making based on regret theory for the evaluation of venture capital projects. Economic Research-Ekonomska Istraživanja, 33(1), 672–697. https://doi.org/10.1080/1331677X.2019.1697327
  • Llamazares, B. (2018). An analysis of the generalised TODIM method. European Journal of Operational Research, 269(3), 1041–1049. https://doi.org/10.1016/j.ejor.2018.02.054
  • Lu, J., Wei, C., Wu, J., & Wei, G. (2019). TOPSIS method for probabilistic linguistic MAGDM with entropy weight and its application to supplier selection of new agricultural machinery products. Entropy, 21(10), 953. https://doi.org/10.3390/e21100953
  • Ma, Z., Zhu, J., & Zhang, S. (2021). Probabilistic-based expressions in behavioural multi-attribute decision making considering pre-evaluation. Fuzzy Optimisation and Decision Making, 20(1), 145–173. https://doi.org/10.1007/s10700-020-09335-8
  • Mao, X. B., Wu, M., Dong, J. Y., Wan, S. P., & Jin, Z. (2019). A new method for probabilistic linguistic multi-attribute group decision making: Application to the selection of financial technologies. Applied Soft Computing, 77, 155–175. https://doi.org/10.1016/j.asoc.2019.01.009
  • McAreavey, R., & McDonagh, J. (2011). Sustainable rural tourism: Lessons for rural development. Sociologia Ruralis, 51(2), 175–194. https://doi.org/10.1111/j.1467-9523.2010.00529.x
  • Oh, J. H., Pouryahya, M., Iyer, A., Apte, A. P., Deasy, J. O., & Tannenbaum, A. (2020). A novel kernel Wasserstein distance on Gaussian measures: An application of identifying dental artefacts in head and neck computed tomography. Computers in Biology and Medicine, 120, 103731. https://doi.org/10.1016/j.compbiomed.2020.103731
  • Pang, Q., Wang, H., & Xu, Z. (2016). Probabilistic linguistic term sets in multi-attribute group decision making. Information Sciences, 369, 128–143. https://doi.org/10.1016/j.ins.2016.06.021
  • Peng, X., Zhang, X., & Luo, Z. (2019). Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artificial Intelligence Review, 53, 3813–3847. https://doi.org/10.1007/s10462-019-09780-x
  • Puška, A., Stojanović, I., & Maksimović, A. (2019). Evaluation of sustainable rural tourism potential in Brcko district of Bosnia and Herzegovina using multi-criteria analysis. Operational Research in Engineering Sciences: Theory and Applications, 2(2), 40–54.
  • Qin, J., Liu, X., & Pedrycz, W. (2017). An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment. European Journal of Operational Research, 258(2), 626–638. https://doi.org/10.1016/j.ejor.2016.09.059
  • Ran, M., Hu, J., Chen, Y., Chen, H., Sun, H., Zhou, J., & Zhang, Y. (2019). Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network. Medical Image Analysis, 55, 165–180. https://doi.org/10.1016/j.media.2019.05.001
  • Rodriguez, R. M., Martinez, L., & Herrera, F. (2012). Hesitant fuzzy linguistic term sets for decision making. IEEE Transactions on Fuzzy Systems, 20(1), 109–119. https://doi.org/10.1109/TFUZZ.2011.2170076
  • Saaty, T. L., & Peniwati, K. (2013). Group decision making: Drawing out and reconciling differences. RWS Publications.
  • Solomon, J. (2020). Optimal transport on discrete domains. Proceedings of Symposia in Applied Mathematics, 76, 103–142. https://doi.org/10.1090/psapm/076/00673
  • Soni, N., Christian, R. A., & Jariwala, N. (2016). Pollution potential ranking of industries using classical TODIM method. Journal of Environmental Protection, 07(11), 1645–1656. https://doi.org/10.4236/jep.2016.711134
  • Su, B. (2011). Rural tourism in China. Tourism Management, 32(6), 1438–1441. https://doi.org/10.1016/j.tourman.2010.12.005
  • Trukhachev, A. (2015). Methodology for evaluating the rural tourism potentials: A tool to ensure sustainable development of rural settlements. Sustainability, 7(3), 3052–3070. https://doi.org/10.3390/su7033052
  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323. https://doi.org/10.1007/BF00122574
  • Villani, C. (2008). Optimal transport: Old and new. Springer Science & Business Media, 338, 105–108.
  • Wang, H., Xu, Z., & Zeng, X. J. (2018). Modelling complex linguistic expressions in qualitative decision making: An overview. Knowledge-Based Systems, 144, 174–187. https://doi.org/10.1016/j.knosys.2017.12.030
  • Wang, W., Liu, X., Qin, J., & Liu, S. (2019). An extended generalised TODIM for risk evaluation and prioritisation of failure modes considering risk indicators interaction. IISE Transactions, 51(11), 1236–1250. https://doi.org/10.1080/24725854.2018.1539889
  • Wang, X., Wang, J., & Zhang, H. (2019). Distance-based multicriteria group decision-making approach with probabilistic linguistic term sets. Expert Systems, 36(2), e12352. https://doi.org/10.1111/exsy.12352
  • Wei, C., Ren, Z., & Rodríguez, R. M. (2015). A hesitant fuzzy linguistic TODIM method based on a score function. International Journal of Computational Intelligence Systems, 8(4), 701–712. https://doi.org/10.1080/18756891.2015.1046329
  • Wei, G., Lei, F., Lin, R., Wang, R., Wei, Y., Wu, J., & Wei, C. (2020). Algorithms for probabilistic uncertain linguistic multiple attribute group decision making based on the GRA and CRITIC method: Application to location planning of electric vehicle charging stations. Economic Research-Ekonomska Istraživanja, 33(1), 828–846. https://doi.org/10.1080/1331677X.2020.1734851
  • Wei, G., Lu, J., Wei, C., & Wu, J. (2020). Probabilistic linguistic GRA method for multiple attribute group decision making. Journal of Intelligent & Fuzzy Systems, 38(4), 4721–4732. https://doi.org/10.3233/JIFS-191416
  • Wei, G., Wei, C., Wu, J., & Wang, H. (2019). Supplier selection of medical consumption products with a probabilistic linguistic MABAC method. International Journal of Environmental Research and Public Health, 16(24), 5082. https://doi.org/10.3390/ijerph16245082
  • Winston, W. L., & Goldberg, J. B. (2004). Operations research: applications and algorithms (Vol. 3). Thomson/Brooks/Cole.
  • Wu, X., & Liao, H. (2019). A consensus-based probabilistic linguistic gained and lost dominance score method. European Journal of Operational Research, 272(3), 1017–1027. https://doi.org/10.1016/j.ejor.2018.07.044
  • Wu, X., Liao, H., Xu, Z., Hafezalkotob, A., & Herrera, F. (2018). Probabilistic linguistic MULTIMOORA: A multicriteria decision making method based on the probabilistic linguistic expectation function and the improved Borda rule. IEEE Transactions on Fuzzy Systems, 26(6), 3688–3702. https://doi.org/10.1109/TFUZZ.2018.2843330
  • Wu, Z., & Xu, J. (2016). Possibility distribution-based approach for MAGDM with hesitant fuzzy linguistic information. IEEE Transactions on Cybernetics, 46(3), 694–705. https://doi.org/10.1109/TCYB.2015.2413894
  • Xu, Z., He, Y., & Wang, X. (2019). An overview of probabilistic-based expressions for qualitative decision-making: Techniques, comparisons and developments. International Journal of Machine Learning and Cybernetics, 10(6), 1513–1528. https://doi.org/10.1007/s13042-018-0830-9
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5
  • Zhang, D., Li, Y., & Wu, C. (2020). An extended TODIM method to rank products with online reviews under intuitionistic fuzzy environment. Journal of the Operational Research Society, 71(2), 322–334. https://doi.org/10.1080/01605682.2018.1545519
  • Zhang, S., Zhu, J., Liu, X., & Chen, Y. (2016). Regret theory-based group decision-making with multidimensional preference and incomplete weight information. Information Fusion, 31, 1–13. https://doi.org/10.1016/j.inffus.2015.12.001
  • Zhang, S., Zhu, J., Liu, X., Chen, Y., & Ma, Z. (2017). Adaptive consensus model with multiplicative linguistic preferences based on fuzzy information granulation. Applied Soft Computing, 60, 30–47. https://doi.org/10.1016/j.asoc.2017.06.028
  • Zhang, Y., Xu, Z., & Liao, H. (2017). A consensus process for group decision making with probabilistic linguistic preference relations. Information Sciences, 414, 260–275. https://doi.org/10.1016/j.ins.2017.06.006
  • Zhang, Y., Xu, Z., & Liao, H. (2019). Water security evaluation based on the TODIM method with probabilistic linguistic term sets. Soft Computing, 23(15), 6215–6230. https://doi.org/10.1007/s00500-018-3276-9
  • Zhang, Y., Xu, Z., Wang, H., & Liao, H. (2016). Consistency-based risk assessment with probabilistic linguistic preference relation. Applied Soft Computing, 49, 817–833.