1,344
Views
1
CrossRef citations to date
0
Altmetric
Articles

The effects of skewness on hedging decisions: an application of the skew-normal distribution in WTI and Brent futures

ORCID Icon, , &
Pages 3099-3118 | Received 12 Jan 2021, Accepted 21 Sep 2021, Published online: 09 Oct 2021

References

  • Abadie, L. M., Goicoechea, N., & Galarraga, I. (2017). Carbon risk and optimal retrofitting in cement plants: an application of stochastic modelling, Monte Carlo simulation and real options analysis. Journal of Cleaner Production, 142(1), 3117–3130. https://doi.org/10.1016/j.jclepro.2016.10.155
  • Adcock, C. J. (2010). Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution. Annals of Operations Research, 176(1), 221–234. https://doi.org/10.1007/s10479-009-0586-4
  • Adcock, C., Eling, M., & Loperfido, N. (2015). Skewed distributions in finance and actuarial science: a review. The European Journal of Finance, 21(13–14), 1253–1281. https://doi.org/10.1080/1351847X.2012.720269
  • Alizadeh, A. H., Alizadeh, N. K., & Pouliasis, P. K. (2008). A Markov regime switching approach for hedging energy commodities. Journal of Banking & Finance, 32 (9), 1970–1983. https://doi.org/10.1016/j.jbankfin.2007.12.020
  • Artzner, P., Eber, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228. https://doi.org/10.1111/1467-9965.00068
  • Azzalini, A. (1985). A class of distribution which includes the normal ones. Scandinavian Journal of Statistic, 12, 171–178.
  • Barañano, A., De La Peña, J. I., & Moreno, R. (2020). Valuation of real-estate losses via Monte Carlo simulation. Economic Research-Ekonomska Istraživanja, 33(1), 1867–1888. https://doi.org/10.1080/1331677X.2020.1756372
  • Barbi, M., & Romagnoli, S. (2018). Skewness, basis risk, and optimal futures demand. International Review of Economics & Finance, 58(11), 14–29. https://doi.org/10.1016/j.iref.2018.02.021
  • Bauwens, L., & Laurent, S. (2005). A new class of multivariate skew densities, with application to generalized autoregressive conditional heteroscedasticity models. Journal of Business & Economic Statistics, 23(3), 346–354. https://doi.org/10.1198/073500104000000523
  • Benedetti, S. M. (2004). Hedge fund portfolio selection with higher moments [Master thesis]. University of Zurich.
  • Beranger, B., Padoan, S. A., Xu, Y., & Sisson, S. A. (2019). Extremal properties of the univariate extended skew-normal distribution. Statistics & Probability Letters, 147, 73–82. https://doi.org/10.1016/j.spl.2018.09.018
  • Bernardi, M. (2013). Risk measures for skew normal mixtures. Statistics & Probability Letters, 83(8), 1819–1824. https://doi.org/10.1016/j.spl.2013.04.016
  • Bhutto, S. A., Ahmed, R. R., Streimikiene, D., Shaikh, S., & Streimikis, J. (2020). Portfolio investment diversification at global stock market: A cointegration analysis of emerging BRICS(P) group. Acta Montanistica Slovaca, 25(1), 57–69.
  • Carmichael, B., & Coën, A. (2013). Asset pricing with skewed-normal return. Finance Research Letters, 10(2), 50–57. https://doi.org/10.1016/j.frl.2013.01.001
  • Castelino, M. G. (1992). Hedge effectiveness: Basis risk and minimum variance hedging. Journal of Futures Markets, 12(2), 187–201. https://doi.org/10.1002/fut.3990120207
  • Chai, S. L., & Zhou, P. (2018). The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems. Energy Economics, 76, 64–75. https://doi.org/10.1016/j.eneco.2018.09.024
  • Chun, D., Cho, H., & Kim, J. (2019). Crude oil price shocks and hedging performance: A comparison of volatility models. Energy Economics, 18(6), 1132–1147.
  • Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157–170. https://doi.org/10.1111/j.1540-6261.1979.tb02077.x
  • Eling, M. (2012). Fitting insurance claims to skewed distributions: are the skew-normal and skew-student good models? Insurance: Mathematics and Economics, 51(2), 239–248. https://doi.org/10.1016/j.insmatheco.2012.04.001
  • Falkowski, M., Sierpińska-Sawicz, A., & Szczepankowski, P. (2020). The effectiveness of hedge fund investment strategies under various market conditions. Contemporary Economics, 14(2), 127–144. https://doi.org/10.5709/ce.1897-9254.336
  • Feng, Z. H., Wei, Y. M., & Wang, K. (2012). Estimating risk for the carbon market via extreme value theory: an empirical analysis of the EU ETS. Applied Energy, 99, 97–108. https://doi.org/10.1016/j.apenergy.2012.01.070
  • Fung, T., & Seneta, E. (2016). Tail asymptotics for the bivariate skew normal. Journal of Multivariate Analysis, 144, 129–138. https://doi.org/10.1016/j.jmva.2015.11.002
  • Hamiton, J. D. (2009). Understanding crude oil prices. Energy, 30, 179–206.
  • Harris, R. D. F., & Shen, J. (2006). Hedging and value at risk. Journal of Futures Markets, 26(4), 369–390. https://doi.org/10.1002/fut.20195
  • Harvey, C. R., Liechty, M., Lietchy, W., & Muller, P. (2004). Portfolio selection with higher moments: A Bayesian decision theoretical approach (working paper). Duke University.
  • Harvey, C. R., & Siddique, A. (2000). Conditional skewness in asset pricing tests. The Journal of Finance, 55(3), 1263–1295. https://doi.org/10.1111/0022-1082.00247
  • Hemmati, R., Saboori, H., & Saboori, S. (2016). Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained windthermal systems within a conditional value-at-risk framework. Energy, 113 (15), 762–775. https://doi.org/10.1016/j.energy.2016.07.089
  • Jarque, C. M., & Bera, A. K. (1987). A test for normality of observations and regression residuals. International Statistical Review/Revue Internationale de Statistique, 55(2), 163–172. https://doi.org/10.2307/1403192
  • Johnson, L. L. (1960). The theory of hedging and speculation in commodity futures. The Review of Economic Studies, 27(3), 139–151. https://doi.org/10.2307/2296076
  • Kraus, A., & Litzenberger, R. H. (1976). Skewness preference and the valuation of risk assets. The Journal of Finance, 31(4), 1085–1100.
  • Lien, D. (2010). The effects of skewness on optimal production and hedging decisions: An application of the skew-normal distribution. Journal of Futures Markets, 30(3), 278–289.
  • Liu, B., Ji, Q., & Fan, Y. (2017). Dynamic return-volatility dependence and risk measure of CoVaR in the oil market: a time-varying mixed copula model. Energy Economics, 68, 53–65. https://doi.org/10.1016/j.eneco.2017.09.011
  • Lu, Z. G., Qi, J. T., Wen, B., & Li, X. P. (2016). A dynamic model for generation expansion planning based on conditional value-at-risk theory under low-carbon economy. Electric Power Systems Research, 141, 363–371. https://doi.org/10.1016/j.epsr.2016.08.011
  • Mills, T. C. (1995). Modelling skewness and Kurtosis in the London stock exchange Ft-Se index return distributions. Journal of the Royal Statistical Society, 44(3), 323–332.
  • Myers, R. J., & Thompson, S. R. (1989). Generalized optimal hedge ratio estimation. American Journal of Agricultural Economics, 71(4), 858–867. https://doi.org/10.2307/1242663
  • Naqvi, B., Mirza, N., Naqvi, W. A., & Rizvi, S. K. A. (2017). Portfolio optimization with higher moments of risk at the Pakistan Stock Exchange. Economic Research-Ekonomska Istraživanja ˇ, 30(1), 1594–1610. https://doi.org/10.1080/1331677X.2017.1340182
  • Okorie, D. I., & Lin, B. (2020). Crude oil price and cryptocurrencies: Evidence of volatility connectedness and hedging strategy. Energy Economics, 87(3), 104703. https://doi.org/10.1016/j.eneco.2020.104703
  • Reboredo, J. C., & Ugando, M. (2015). Downside risks in EU carbon and fossil fuel markets. Mathematics and Computers in Simulation, 111(5), 17–35. https://doi.org/10.1016/j.matcom.2014.12.001
  • Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26 (7), 1443–1471. https://doi.org/10.1016/S0378-4266(02)00271-6
  • Roustai, M., Rayati, M., Sheikhi, A., & Ranjbar, A. (2018). A scenario-based optimization of smart energy hub operation in a stochastic environment using conditional-valueat-risk. Sustainable Cities and Society, 39(5), 309–316. https://doi.org/10.1016/j.scs.2018.01.045
  • Segnon, M., Lux, T., & Gupta, R. (2017). Modeling and forecasting the volatility of carbon dioxide emission allowance prices: a review and comparison of modern volatility models. Renewable and Sustainable Energy Reviews, 69(3), 692–704. https://doi.org/10.1016/j.rser.2016.11.060
  • Sharpe, W. E. (1964). Capital asset prices: A theory of market equilibrium under condition of risk. The Journal of Finance, 19(3), 425–442.
  • Tekiner-Mogulkoc, H., Coit, D. W., & Felder, F. A. (2015). Mean-risk stochastic electricity generation expansion planning problems with demand uncertainties considering conditional value-at-risk and maximum regret as risk measures. International Journal of Electrical Power & Energy Systems, 73(12), 309–317. https://doi.org/10.1016/j.ijepes.2015.05.003
  • Vernic, R. (2006). Multivariate skew-normal distributions with applications in insurance. Insurance: Mathematics and Economics, 38(2), 413–426. https://doi.org/10.1016/j.insmatheco.2005.11.001
  • Wang, Y. D., Geng, Q. J., & Meng, F. Y. (2019). Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks. Energy, 181, 815–826. https://doi.org/10.1016/j.energy.2019.05.226
  • Youssef, M., Belkacem, L., & Mokni, K. (2015). Value-at-risk estimation of energy commodities: a long-memory GARCH-EVT approach. Energy Economics, 51, 99–110. https://doi.org/10.1016/j.eneco.2015.06.010
  • Yu, W. H., Yang, K., Wei, Y., & Lei, L. K. (2018). Measuring Value-at-Risk and Expected Shortfall of crude oil portfolio using extreme value theory and vine copula. Physica A: Statistical Mechanics and Its Applications, 490(9), 1423–1433. https://doi.org/10.1016/j.physa.2017.08.064