4,732
Views
5
CrossRef citations to date
0
Altmetric
Articles

Volatility forecasting using deep neural network with time-series feature embedding

ORCID Icon, & ORCID Icon
Pages 1377-1401 | Received 17 Dec 2021, Accepted 06 Jun 2022, Published online: 22 Jun 2022

References

  • Barra, S., Carta, S. M., Corriga, A., Podda, A. S., & Recupero, D. R. (2020). Deep learning and time series-to-image encoding for financial forecasting. IEEE/CAA Journal of Automatica Sinica, 7(3), 683–692. https://doi.org/10.1109/JAS.2020.1003132
  • Barucci, E., Bonollo, M., Poli, F., & Rroji, E. (2021). A machine learning algorithm for stock picking built on information based outliers. Expert Systems with Applications, 184, 115497. https://doi.org/10.1016/j.eswa.2021.115497
  • Bauwens, L., Hafner, C. M., & Rombouts, J. V. K. (2007). Multivariate mixed normal conditional heteroskedasticity. Computational Statistics & Data Analysis, 51(7), 3551–3566. https://doi.org/10.1016/j.csda.2006.10.012
  • Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192–213. https://doi.org/10.1016/j.ins.2011.12.028
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
  • Chen, J., & Tsai, Y. (2020). Encoding candlesticks as images for pattern classification using convolutional neural networks. Financial Innovation, 6(1), 26–33. https://doi.org/10.1186/s40854-020-00187-0
  • Davidovic, M. (2021). From pandemic to financial contagion: High-frequency risk metrics and Bayesian volatility analysis. Finance Research Letters, 42, 101913. https://doi.org/10.1016/j.frl.2020.101913
  • Dvorsky, J., Belas, J., Gavurova, B., & Brabenec, T. (2021). Business risk management in the context of small and medium-sized enterprises. Economic Research-Ekonomska Istraživanja, 34(1), 1690–1708. https://doi.org/10.1080/1331677X.2020.1844588
  • Ecer, F. (2013). Comparing the bank failure prediction performance of neural networks and support vector machines: The Turkish case. Economic Research-Ekonomska Istraživanja, 26(3), 81–98. https://doi.org/10.1080/1331677X.2013.11517623
  • Eduardo, R., Pablo, J. A., & José, J. N. (2019). Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network. Expert Systems with Applications, 129, 1–9.
  • Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339–350. https://doi.org/10.1198/073500102288618487
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007. ), https://doi.org/10.2307/1912773
  • Gabriel, T. R., André, A. P. S., Viviana, C. M., & Leandro, D. S. C. (2021). Novel hybrid model based on echo state neural network applied to the prediction of stock price return volatility. Expert Systems with Applications, 184, 115490.
  • Ge, W., Lalbakhsh, P., Isai, L., Lenskiy, A., & Suominen, H. (2023). Neural Network-Based financial volatility forecasting: A systematic review. ACM Computing Surveys, 55(1), 1–40. https://doi.org/10.1145/3483596
  • Hajizadeh, E., Seifi, A., Fazel Zarandi, M. H., & Turksen, I. B. (2012). A hybrid modeling approach for forecasting the volatility of S&P 500 index return. Expert Systems with Applications, 39(1), 431–436. https://doi.org/10.1016/j.eswa.2011.07.033
  • Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175–184. https://doi.org/10.1016/j.ins.2012.08.023
  • Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature review: Machine learning techniques applied to financial market prediction. Expert Systems with Applications, 124, 226–251. https://doi.org/10.1016/j.eswa.2019.01.012
  • Khan, F., Rehman, S., Khan, H., & Xu, T. (2016). Pricing of risk and volatility dynamics on an emerging stock market: Evidence from both aggregate and disaggregate data. Economic Research-Ekonomska Istraživanja, 29(1), 799–815. https://doi.org/10.1080/1331677X.2016.1197554
  • Kim, J., Kim, D. H., & Jung, H. (2021). Applications of machine learning for corporate bond yield spread forecasting. The North American Journal of Economics and Finance, 58, 101540. https://doi.org/10.1016/j.najef.2021.101540
  • Kim, D., Yoon, J., & Park, C. (2021). Pricing external barrier options under a stochastic volatility model. Journal of Computational and Applied Mathematics, 394, 113555. https://doi.org/10.1016/j.cam.2021.113555
  • Lampariello, L., Neumann, C., Ricci, J. M., Sagratella, S., & Stein, O. (2021). Equilibrium selection for multi-portfolio optimization. European Journal of Operational Research, 295(1), 363–373. https://doi.org/10.1016/j.ejor.2021.02.033
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. [Database] https://doi.org/10.1038/nature14539
  • Lee, S. W., & Kim, H. Y. (2020). Stock market forecasting with super-high dimensional time-series data using ConvLSTM, trend sampling, and specialized data augmentation. Expert Systems with Applications, 161, 113704. https://doi.org/10.1016/j.eswa.2020.113704
  • Liu, Y. (2019). Novel volatility forecasting using deep learning-long short term memory recurrent neural networks. Expert Systems with Applications, 132, 99–109. https://doi.org/10.1016/j.eswa.2019.04.038
  • Li, T., Zhang, Y., & Wang, T. (2021). SRPM-CNN: A combined model based on slide relative position matrix and CNN for time series classification. Complex & Intelligent Systems, 7(3), 1619–1631. https://doi.org/10.1007/s40747-021-00296-y
  • Li, D., Zhang, X., Zhu, K., & Ling, S. (2018). The ZD-GARCH model: A new way to study heteroscedasticity. Journal of Econometrics, 202(1), 1–17. https://doi.org/10.1016/j.jeconom.2017.09.003
  • Ma, Y., Han, R., & Wang, W. (2021). Portfolio optimization with return prediction using deep learning and machine learning. Expert Systems with Applications, 165, 113973. https://doi.org/10.1016/j.eswa.2020.113973
  • Mishra, S., & Padhy, S. (2019). An efficient portfolio construction model using stock price predicted by support vector regression. The North American Journal of Economics and Finance, 50, 101027. https://doi.org/10.1016/j.najef.2019.101027
  • Nayak, R. K., Mishra, D., & Rath, A. K. (2015). A Naïve SVM-KNN based stock market trend reversal analysis for Indian benchmark indices. Applied Soft Computing, 35, 670–680. https://doi.org/10.1016/j.asoc.2015.06.040
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260
  • Paolella, M. S., Polak, P., & Walker, P. S. (2019). Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns. Journal of Econometrics, 213(2), 493–515. https://doi.org/10.1016/j.jeconom.2019.07.002
  • Poon, S., & Granger, C. (2005). Practical issues in forecasting volatility. Financial Analysts Journal, 1(61), 45–56.
  • Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005-2019. Applied Soft Computing, 90, 106181. https://doi.org/10.1016/j.asoc.2020.106181
  • Shin, D. W. (2018). Forecasting realized volatility: A review. Journal of the Korean Statistical Society, 47(4), 395–404. https://doi.org/10.1016/j.jkss.2018.08.002
  • Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, USA, San Diego, 1–10.
  • Takahashi, M., Watanabe, T., & Omori, Y. (2021). Forecasting daily volatility of stock price index using daily returns and realized volatility. Econometrics and Statistics, preprint, 1–20.
  • Vychytilová, J., Pavelková, D., Pham, H., & Urbánek, T. (2019). Macroeconomic factors explaining stock volatility: Multi-country empirical evidence from the auto industry. Economic Research-Ekonomska Istraživanja, 32(1), 3333–3347. https://doi.org/10.1080/1331677X.2019.1661003
  • Wang, Z., & Oates, T. (2015). Imaging time-series to improve classification and imputation. 24th International Joint Conference on Artificial Intelligence, USA, Palo Alto, 3939–3945.
  • Wang, Y., Xiang, Y., Lei, X., & Zhou, Y. (2021). Volatility analysis based on GARCH-type models: Evidence from the Chinese stock market. Economic Research-Ekonomska Istraživanja, preprint, 1–25.
  • Wang, L., Xu, Y., & Salem, S. (2021). Theoretical and experimental evidence on stock market volatilities: A two-phase flow model. Economic Research-Ekonomska Istraživanja, preprint, 1–22.
  • Wu, J. M., Li, Z., Herencsar, N., Vo, B., & Lin, J. C. (2021). A graph-based CNN-LSTM stock price prediction algorithm with leading indicators. Multimedia Systems, preprint, 1–20.
  • Yang, R., Yu, L., Zhao, Y., Yu, H., Xu, G., Wu, Y., & Liu, Z. (2020). Big data analytics for financial market volatility forecast based on support vector machine. International Journal of Information Management, 50, 452–462. https://doi.org/10.1016/j.ijinfomgt.2019.05.027
  • Yu, Z., Wang, Z., You, J., Zhang, J., Liu, J., Wong, H. S., & Han, G. (2017). A new kind of nonparametric test for statistical comparison of multiple classifiers over multiple datasets. IEEE Transactions on Cybernetics, 47(12), 4418–4431.
  • Zhang, H., Nguyen, H., Vu, D., Bui, X., & Pradhan, B. (2021). Forecasting monthly copper price: A comparative study of various machine learning-based methods. Resources Policy, 73, 102189. https://doi.org/10.1016/j.resourpol.2021.102189
  • Zhang, X., Zou, J., He, K., & Sun, J. (2016). Accelerating very deep convolutional networks for classification and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(10), 1943–1955. https://doi.org/10.1109/TPAMI.2015.2502579