269
Views
4
CrossRef citations to date
0
Altmetric
Forest Environment

Effects of biochar and litter on water relations of Japanese black pine (Pinus thunbergii) seedlings

ORCID Icon, , , , &
Pages 76-82 | Received 13 Sep 2019, Accepted 13 Feb 2020, Published online: 25 Feb 2020

References

  • Ashkannejhad S, Horton TR. 2006. Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol. 169:345–354. doi:10.1111/j.1469-8137.2005.01593.x
  • Aučina A, Rudawska M, Leski T, Skridaila A, Riepsas E, Iwanski M. 2007. Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter. Appl Environ Microbiol. 73:4867–4873. doi:10.1128/AEM.00584-07
  • Baar J, Horton TR, Kretzer AM, Bruns TD. 1999. Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand- replacing wildfire. New Phytol. 143:409–418. doi:10.1046/j.1469-8137.1999.00452.x
  • Choi D, Watanabe Y, Guy RD, Sugai T, Toda H, Koike T. 2017. Photosynthetic characteristics and nitrogen allocation in the black locust (Robinia pseudoacacia L.) grown in a FACE system. Acta Physiol Plant. 39:71. doi:10.1007/s11738-017-2366-0
  • Choi DS, Quoreshi AM, Maruyama Y, Jin HO, Koike T. 2005. Effect of ectomycorrhizal infection on growth and photosynthetic characteristics of Pinus densiflora seedlings grown under elevated CO2 concentrations. Photosynthetica. 43:223–229. doi:10.1007/s11099-005-0037-7
  • DeLuca TH, Sala A. 2006. Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland Northwest. Ecology. 87:2511–2522.
  • Dixon RK, Wright GM, Behrns GT, Teskey RO, Hinckley TM. 1980. Water deficits and root growth of ectomycorrhizal white oak seedlings. Can J For Res. 10:545–548. doi:10.1139/x80-089
  • Gale N, Halim A, Horsburgh M, Thomas SC. 2017. Comparative responses of early-successional plants to charcoal soil amendments. Ecosphere. 8:1–18. doi:10.1002/ecs2.1933
  • Głąb T, Palmowska J, Zaleski T, Gondek K. 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma. 281:11–20. doi:10.1016/j.geoderma.2016.06.028
  • Kanetoshi M, Makoto K, Kitaoka S, Watanabe M, Eguchi N, Watanabe Y, Saito H, Koike T. 2009. Seasonal changes in the photosynthesis and nitrogen allocation of black locust saplings regenerated in different light conditions (in Japanese). Boreal For Soc. 57:29–31. doi:10.24494/jfsha.57.0_29
  • Karizumi N. 2012. Salt damage for A PINE “Ippon-matsu” at Takata-matsubara and Osugi (giant cedar) at Imaizumi-Tenmangu shrine and tree surgery techniques (in Japanese). Root Res. 21:73–78. doi:10.3117/rootres.21.73
  • Kataoka R, Taniguchi T, Ooshima H, Futai K. 2008. Comparison of the bacterial communities established on the mycorrhizae formed on Pinus thunbergii root tips by eight species of fungi. Plant Soil. 304:267–275. doi:10.1007/s11104-008-9548-x
  • Kipfer T, Wohlgemuth T, van der Heijden MGA, Ghazoul J, Egli S. 2012. Growth response of drought-stressed pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi. PLoS One. 7:e35275. doi:10.1371/journal.pone.0035275
  • Landgraf D, Wedig S, Klose S. 2005. Medium-and short-term available organic matter, microbial biomass, and enzyme activities in soils under Pinus sylvestris L. and Robinia pseudoacacia L. in a sandy soil in NE Saxony, Germany. J Plant Nutr Soil Sci. 168:193–201. doi:10.1002/jpln.200421384
  • Lehmann J, Joseph S. 2015. Biochar for environmental management: science, technology and implementation. Second ed. New York, NY: Routledge.
  • Lehmann J, Pereira da Silva Jr. J, Steiner C, Nehls T, Zech W, Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil. 249:343–357. doi:10.1023/A:1022833116184
  • Lehto T, Zwiazek JJ. 2011. Ectomycorrhizas and water relations of trees: A review. Mycorrhiza. 21:71–90.
  • Lyu S, Du G, Liu Z, Zhao L, Lyu D. 2016. Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiol Plant. 38:220. doi:10.1007/s11738-016-2236-1
  • Makoto K, Choi D, Hashidoko Y, Koike T. 2011a. The growth of Larix gmelinii seedlings as affected by charcoal produced at two different temperatures. Biol Fertil Soils. 47:467–472. doi:10.1007/s00374-010-0518-0
  • Makoto K, Hirobe M, DeLuca TH, Bryanin SV, Procopchuk VF, Koike T. 2011b. Effects of fire-derived charcoal on soil properties and seedling regeneration in a recently burned Larix gmelinii/Pinus sylvestris forest. J Soils Sediments. 11:1317–1322. doi:10.1007/s11368-011-0424-6
  • Makoto K, Tamai Y, Kim YS, Koike T. 2010. Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant Soil. 327:143–152. doi:10.1007/s11104-009-0040-z
  • Marozas V, Cekstere G, Laivins M, Straigyte L. 2015. Comparison of neophyte communities of Robinia pseudoacacia L. and Acer negundo L. in the eastern Baltic Sea region cities of Riga and Kaunas. Urban For Urban Green. 14:826–834. doi:10.1016/j.ufug.2015.08.003
  • Marschner H, Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant Soil. 159:89–102. doi:10.1007/BF00000098
  • Masaka K. 2013. Opinion and its scientific evidence concerning the exotic tree species, Robinia pseudoacaia (in Japanese). Jour. Japan For Res. 95:332–341.
  • Matsuda Y, Noguchi Y, Ito S. 2009. Ectomycorrhizal fungal community of naturally regenerated Pinus thunbergii seedlings in a coastal pine forest. J For Res. 14:335–341. doi:10.1007/s10310-009-0140-x
  • Morte A, Díaz G, Rodríguez P, Alarcón JJ, Sánchez-Blanco MJ. 2001. Growth and water relations in mycorrhizal and nonmycorrhizal Pinus halepensis plants in response to drought. Biol Plant. 44:263–267. doi:10.1023/A:1010207610974
  • Nasir H, Iqbal Z, Hiradate S, Fujii Y. 2005. Allelopathic potential of Robinia pseudo-acacia L. J Chem Ecol. 31:2179–2192. doi:10.1007/s10886-005-6084-5
  • Ogawa M. 2007. Rehabilitation of pine with charcoal and mycorrhiza (in Japanese). Tokyo: Tsukiji-shokan.
  • Peng C, Li Q, Zhang Z, Wu Z, Song X, Zhou G, Song X. 2019. Biochar amendment changes the effects of nitrogen deposition on soil enzyme activities in a Moso bamboo plantation. J For Res. 24:1–10. doi:10.1080/13416979.2019.1646970
  • Prendergast-Miller MT, Duvall M, Sohi SP. 2014. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci. 65:173–185. doi:10.1111/ejss.12079
  • Preston CM, Schmidt MWI. 2006. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences. 3:397–420. doi:10.5194/bg-3-397-2006
  • Rice SK, Westerman B, Federici R. 2004. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem. Plant Ecol. 174:97–107. doi:10.1023/B:VEGE.0000046049.21900.5a
  • Shinano T, Yamamoto T, Tawaraya K, Tadokoro M, Koike T, Osaki M. 2007. Effects of elevated atmospheric CO2 concentration on the nutrient uptake characteristics of Japanese larch (Larix kaempferi). Tree Physiol. 27:97–104. doi:10.1093/treephys/27.1.97
  • Smith SE, Read D. 1997. Mycorrhizal Symbiosis. 2nd ed. London: Academic Press.
  • Taniguchi T, Kanzaki N, Tamai S, Yamanaka N, Futai K. 2007a. Does ectomycorrhizal fungal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient? New Phytol. 173:322–334. doi:10.1111/j.1469-8137.2006.01910.x
  • Taniguchi T, Tamai S, Yamanaka N, Futai K. 2007b. Inhibition of the regeneration of Japanese black pine (Pinus thunbergii) by black locust (Robinia pseudoacacia) in coastal sand dunes. J For Res. 12:350–357. doi:10.1007/s10310-007-0023-y
  • Thomas SC, Gale N. 2015. Biochar and forest restoration: a review and meta-analysis of tree growth responses. New For. 46:931–946. doi:10.1007/s11056-015-9491-7
  • Wallenda T, Kottke I. 1998. Nitrogen deposition and ectomycorrhizas. New Phytologist. 139:169–187.
  • Wang X, Qu L, Mao Q, Watanabe M, Hoshika Y, Koyama A, Kawaguchi K, Tamai Y, Koike T. 2015. Ectomycorrhizal colonization and growth of the hybrid larch F₁ under elevated CO2 and O3. Environ Pollut. 197:116–126. doi:10.1016/j.envpol.2014.11.031
  • Yin D, Song R, Qi J, Deng X. 2018. Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition. J For Res. 29:1775–1788. doi:10.1007/s11676-017-0583-4
  • Zhang T, Wen X-P-P, Ding G-J-J, Górski F. 2017. Ectomycorrhizal symbiosis enhances tolerance to low phosphorous through expression of phosphate transporter genes in masson pine (Pinus massoniana). Acta Physiol Plant. 39:101. doi:10.1007/s11738-017-2392-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.