853
Views
4
CrossRef citations to date
0
Altmetric
Special Feature: Recent advances in the nitrogen-fixing symbiosis between Frankia and actinorhizal plants

Effect of symbiotic associations with Frankia and arbuscular mycorrhizal fungi on antioxidant activity and cell ultrastructure in C. equisetifolia and C. obesa under salt stress

ORCID Icon, , , ORCID Icon, , , & show all
Pages 117-127 | Received 12 Oct 2021, Accepted 31 Jan 2022, Published online: 08 Feb 2022

References

  • Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44:276–287. doi:10.1016/0003-2697(71)90370-8.
  • Bergmeyer HU. 1970. Methoden der Enzymatischen Analyse. Vol. 1, Berlin: Akademie Verlag; p. 636–647.
  • Borde M, Dudhane M, Jite P. 2011. Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Protection. 30:265–271. doi:10.1016/j.cropro.2010.12.010.
  • Bouizgarne B, Oufdou K, Ouhdouch Y. 2015. Actinorhizal and rhizobial-legume symbioses for alleviation of abiotic stresses. In: Arora N, editor. Plant microbes symbiosis: applied facets. New Delhi: Springer. doi:10.1007/978-81-322-2068-8_14.
  • Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 28:25–30. doi:10.1016/S0023-6438(95)80008-5.
  • Carter JL, Colmer TD, Veneklaas EJ. 2006. Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. New Phytol. 169:123–134. doi:10.1111/j.1469-8137.2005.01552.x.
  • Chang W, Sui X, Fan XX, Jia TT, Song FQ. 2018. Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia Seedlings. Front Microbiol. 9:652. doi:10.3389/fmicb.2018.00652.
  • Chele KH, Steenkamp P, Piater LA, Dubery IA, Huyser J, Tugizimana F. 2021. A global metabolic map defines the effects of a Si-based biostimulant on tomato plants under normal and saline conditions. Metabolites. 11(12):820. doi:10.3390/metabo11120820.
  • Cooper K, Farrant JM. 2002. Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection vs. repair. J Exp Bot. 53:1805–1813. doi:10.1093/jxb/erf028.
  • Dagar JC, Minhas PS. 2016. Agroforestry for the management of waterlogged saline soils and poor-quality waters. Adv Agroforestry. 13. doi:10.1007/978-81-322-2659-8_2.
  • Das K, Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2:53. doi:10.3389/fenvs.2014.00053.
  • Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem. 50:4959–4964. doi:10.1021/jf0255937.
  • Diagne N, Djighaly PI, Ngom M, Prodjinoto H, Ngom D, Hocher V, Fall D, Diouf D, Nambiar-Veetil M, and Sy MO, et al. 2014. Rehabilitation of saline lands using selected salt-tolerant Casuarina-microorganisms combinations. Proceedings of 5th International Casuarina workshop Chennai India. In book: Casuarina Improvement for Securing Rural Livelihoods. 3-7 February 2014. ISBN 978- 93-82387-12-1 – IUFRO. 3–7 February 2014. https://www.iufro.org/download/file/20550/73/news14-2_pdf/
  • Diagne N, Ndour M, Djighaly PI, Ngom D, Ngom MCN, NDONG Gdong, Svistoonoff S, Cherif-Silini H. 2020. Effect of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.) Frontiers in Sustainable Food Systems, doi: 10.3389/fsufs.2020.601004
  • Djighaly PI, Diagne N, Ngom M, Ngom D, Hocher V, Fall D, Diouf D, Laplaze L, Svistoonoff S, Champion A. 2018. Selection of arbuscular mycorrhizal fungi strains to improve Casuarina equisetifolia (L.) and Casuarina glauca (Sieb.) tolerance to salinity. Ann Forest Sci. 75. doi:10.1007/s13595-018-0747-1.
  • Djighaly PI, Ngom D, Diagne N, Fall D, Ngom M, Diouf D, Hocher V, Laplaze L, Champion A, Farrant JM, et al. 2020. Effect of Casuarina plantations inoculated with arbuscular mycorrhizal fungi and Frankia on the diversity of herbaceous vegetation in saline environments in Senegal. Diversity. 12:293. doi:10.3390/d12080293.
  • Dontha S. 2016. A review on antioxidant methods. Asian J Pharmaceutical Clinl Res. Oct;9(8):14–32. doi:10.22159/ajpcr.2016.v9s2.13092.
  • Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. 2021. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci. 11:552969. doi:10.3389/fpls.2020.55296.
  • Duro N, Batista-Santos P, da Costa M, Maia R, Castro RM IV, Ramalho JC, Pawlowski K, Máguas C, Ribeiro-Barros A, Ribeiro-Barros A. 2016. The impact of salinity on the symbiosis between Casuarina glauca Sieb. ex Spreng. and N2-fixing Frankia bacteria based on the analysis of Nitrogen and Carbon metabolism. Plant Soil. 398:327–337. doi:10.1007/s11104-015-2666-3.
  • Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM. 2013. A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil. 366:333–349. doi:10.1007/s11104-012-1409-y.
  • Evelin H, Kapoor R, Giri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot. 104:1263–1280. doi:10.1093/aob/mcp251.
  • Fan C, Qiu Z, Zeng B, Li X, Xu SH. 2018. Physiological adaptation and gene expression analysis of Casuarina equisetifolia under salt stress. Biol Plantarum. 62:489–500. doi:10.1007/s10535-018-0799-y.
  • FAO. 2018. Handbook for saline soil management. ISBN: 978-92-5-130141-8. https://www.fao.org/documents/card/en/c/I7318EN/
  • Goyal A. 2007. Osmoregulation in Dunaliella, Part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol Biochem PPB. 45:705–710. doi:10.1016/j.plaphy.2007.05.009.
  • Graça I, Mendes VM, Marques I, Duro N, da Costa M, Ramalho JC, Pawlowski K, Manadas B, Pinto Ricardo CP, Ribeiro-Barros AI. 2020. Comparative proteomic analysis of nodulated and non-nodulated Casuarina glauca Sieb. ex Spreng. Grown under salinity conditions using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Int J Mol Sci. 21:78. doi:10.3390/ijms21010078.
  • Ha-Tran DM, Nguyen TTM, Hung SH, Huang E, Huang CC. 2021. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. Int J Mol Sci. 22(6):3154. doi:10.3390/ijms22063154.
  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil. 331:313–327. doi:10.1007/s11104-009-0255-z.
  • Hamrouni L, Hanana M, Abdelly C, Ghorbel A. 2011. Exclusion du chlorure et inclusion du sodium: deux mécanismes concomitants de tolérance à la salinité chez la vigne sauvage Vitis vinifera subsp. Sylvestris (var. ‘Séjnèné). Biotechnol Agron Soc Environ. 15(3):387–400.
  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci. 7. doi:10.3389/fpls.2016.01787.
  • Hashem A, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Shah MA. 2016. Induction of osmoregulation and modulation of salt stress in Acacia gerrardii benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Biomed Res Int. 2016:11. Article ID 6294098. doi:10.1155/2016/6294098.
  • Herzog V, Fahimi HD. 1973. A new sensitive colorimetric assay for peroxidase using 3,3’-diaminobenzidine as hydrogen donor. Anal Biochem. 55(2):554–562. doi:10.1177/21.5.499.
  • Huang Y, Bie Z, He S, Hua B, Zhen A, Liu Z. 2010. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ Exp Bot. 69:32–38. doi:10.1016/j.envexpbot.2010.02.002.
  • Isla R, Guillén M, Aragüés R. 2014. Response of five tree species to salinity and waterlogging: shoot and root biomass and relationships with leaf and root ion concentrations. Agroforestry Sys. 88(3):461–477. doi:10.1007/s10457-014-9705-6.
  • Jorge T, Duro N, da Costa M, Florian A, Ramalho J, Ribeiro-Barros A, Fernie A, António C. 2017. GC-TOF-MS analysis reveals salt stress-responsive metabolites in Casuarina glauca tissues. Metabolomics. 13:95. doi:10.1007/s11306-017-1234-7.
  • Jorge TF, Ramalho JC, Alseekh S, Pais IP, Leitão AE, Rodrigues AP, Scotti-Campos P, Ribeiro-Barros AI, Fernie AR, António C. 2021. Will Casuarina glauca stress resilience be maintained in the face of climate change? Metabolites. 11(9):593. doi:10.3390/metabo11090593.
  • Jorge TF, Tohge T, Wendenburg R, Ramalho JC, António C, Ribeiro-Barros AI, Fernie AR, António C. 2019. Salt-stress secondary metabolite signatures involved in the ability of Casuarina glauca to mitigate oxidative stress. Environ Exp Bot. 166:103808. doi:10.1016/j.envexpbot.2019.103808.
  • Kohler J, Hernández A, Caravaca F, Roldán A. 2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot. 245-252. doi:10.1016/j.envexpbot.2008.09.008.
  • Liang BB, Wang WJ, Fan XX, Kurakov AV, Liu YF, Song FQ, Chang W. 2021. Arbuscular mycorrhizal fungi can ameliorate salt stress in Elaeagnus angustifolia by improving leaf photosynthetic function and ultrastructure. Plant Biol (Stuttg). 1:232–241. doi:10.1111/plb.13164.
  • Ma Y, Dias MC, Freitas H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci. 11:1750. doi:10.3389/fpls.2020.591911.
  • Mahgoub HAM, Fouda A, Eid AM, Ewais EED, Hassan SED. 2021. Biotechnological application of plant growth-promoting endophytic bacteria isolated from halophytic plants to ameliorate salinity tolerance of Vicia faba L. Plant Biotechnol Rep. 15:819–843. doi:10.1007/s11816-021-00716-y.
  • Mansour SR, Abdel-lateif K, Bogusz D, Franche C. 2016. Influence of salt stress on inoculated Casuarina glauca seedlings. Symbiosis. 70:129–138. doi:10.1007/s13199-016-0425-8.
  • Meena RS, Vijayakumar V, Yadav GS, Mitran T. 2018. Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere. Plant Growth Regul. 84:207–223. doi:10.1007/s10725-017-0334-8.
  • Murry MA, Fontaine MS, and Torrey JG. 1984. Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. In: Akkermans ADL, Baker D, Huss-Danell K, and Tjepkema JD, editors. Frankia symbioses. Developments in plant and soil sciences. Vol. 12, pp. 61–78. Dordrecht: Springer. doi:10.1007/978-94-009-6158-6_7.
  • Nakano Y, Asada K. 1981. Hydrogen Peroxide is scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 22:867–880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Ngom M, Gray K, Diagne N, Oshone R, Fardoux J, Hassen G, Hocher V, Svistoonoff S, Laplaze L, Tisa LS, et al. 2016. A symbiotic performance of diverse Frankia strains on salt-stressed Casuarina glauca and Casuarina equisetifolia plants. Frontier Plant Sci. doi:10.3389/fpls.2016.01331
  • NRC (National Research Council). 1984. Casuarinas: nitrogen-fixing trees for adverse sites. Washington DC (USA): Office of International Affairs.
  • Oliveira RS, Castro PM, Dodd JC, Vosátka M. 2005. Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere. 60(10):1462–1470. doi:10.1016/j.chemosphere.2005.01.038.
  • Oshone R, Mansour SR, Tisa LS. 2013. Effect of salt stress on the physiology of Frankia sp. strain CcI6. J Biosci. 38:699–702. doi:10.1007/s12038-013-9371-2.
  • Ren CG, Bai YJ, Kong CC, Bian B, Xie Z. 2016. Synergistic interactions between salt-tolerant Rhizobia and Arbuscular Mycorrhizal Fungi on Salinity tolerance of Sesbania cannabina plants. J Plant Growth Regul. 35:1098–1107. doi:10.1007/s00344-016-9607-0.
  • Ribeiro-Barros AI, da Costa M, Duro N, Graça I, Batista-Santos P, Jorge TF, Lidon FC, Pawlowski K, António C, Ramalho JC. 2016. An integrated approach to understand the mechanisms underlying salt stress tolerance in Casuarina glauca and its relation with nitrogen-fixing Frankia Thr. Symbiosis. 70:111–116.
  • Saint-Etienne L, Paul S, Imbert D, Dulormne M, Muller F, Toribio A, Plenchette C, AM B. 2006. Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient. For Ecol Manag. 232:86–89. doi:10.1016/j.foreco.2006.05.046.
  • Sayed WF. 2011. Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions—review. Folia Microbiol (Praha). 56:1–9. doi:10.1007/s12223-011-0002-8.
  • Schüßler A, and Walker C. 2010. The Glomeromycota: a species list with new families and new genera. In: Schüßler A, and Christopher Walker G, editors. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The royal botanic garden kew, CreateSpace Independent Publishing Platform, 2011: Botanische Staatssammlung Munich, and Oregon State University, 58. Printed copy available under Available at: http://www.amf-phylogeny.com
  • Scotti-Campos P, Duro N, da Costa M, Pais IP, Rodrigues AP, Batista-Santos P, Semedo JN, Leitão AE, Lidon FC, Pawlowski K, et al. 2016. Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. In symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen. J Plant Physiol. 196:60–69.
  • Selvakesavan RK, Dhanya NN, Thushara P, Abraham SM, Jayaraj RSC, Balasubramanian A, Deeparaj B, Sudha S, Sowmiya Rani KS, Bachpai VKW, Ganesh D, Diagne N, Laplaze L, Gherbi H, Svistoonoff S, Hocher V, Franche C, Bogusz D, and Nambiar-Veetil M. 2016. Intraspecies variation in sodium partitioning, potassium and proline accumulation under salt stress in Casuarina equisetifolia Forst. Symbiosis. 70:117–127. doi:10.1007/s13199-016-0424-9
  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. doi:10.1007/s00572-008-0180-7
  • Shrivastava P, Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 22:123–131. doi:10.1016/j.sjbs.2014.12.001.
  • Tani C, Sasakawa H. 2003. Salt tolerance of Casuarina equisetifolia and Frankia Ceq1 strain isolated from the root nodules of C. equisetifolia. J Soil Sci Plant Nutr. doi:10.1080/00380768.2003.10410000
  • Thalmann M, Santelia D. 2017. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 214:943–951. doi:10.1111/nph.14491.
  • Trouvelot A, Kough JL, and Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d’un système radiculaire. Recherches et méthodes d’estimation ayant une signification fonctionnelle. In: Dans: aspects Physiologiques et Génétiques des Mycorhizes. Dijon: INRA Press; p. 217–221. https://ci.nii.ac.jp/naid/10026021823/#cit
  • Van der Moezel PG, Walton CS, Pearce-Pinto GVN, Bell DT. 1988. Screening for salinity and waterlogging tolerance in five Casuarina species. Landsc Urban Plan. 17:331–337. doi:10.1016/0169-2046(89)90087-X.
  • Wang Y, Zhang J, Qiu Z, Zeng B, Zhang Y, Wang X, Chen J, Zhong C, Deng R, Fan C. 2021. Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment. PeerJ. 9:e12133.
  • Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ. 2010. Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ. 56(10):470–475.
  • Zai XM, Fan JJ, Hao ZP, Liu XM, Zhang WX. 2021. Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment. Sci Rep. 11:5761. doi:10.1038/s41598-021-84284-9.
  • Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555–559. doi:10.1016/S0308-8146(98)00102-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.