140
Views
0
CrossRef citations to date
0
Altmetric
Silviculture and Plant Sciences

Initial growth and physiology of guanandi (Calophyllum brasiliense Cambess) seedlings treated with humic acids and aqueous vermicompost extract

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 436-444 | Received 28 Nov 2022, Accepted 08 Jun 2023, Published online: 19 Jun 2023

References

  • Aguiar NO, Canellas LP, Dobbss LB, Zandonadi DB, Olivares FL, Façanha AR. 2009. Distribuição de massa molecular de ácidos húmicos e promoção do crescimento radicular [Molecular mass distribution of humic acids and promotion of root growth]. Rev Bras Ciênc Solo. 33(6):1613–1623. Portuguese. doi:10.1590/S0100-06832009000600010.
  • Aguiar NO, Novotny EH, Oliveira AL, Rumjanek VM, Olivares FL, Canellas LP. 2013. Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. J Geochem Explor. 129:95–102. doi:10.1016/j.gexplo.2012.10.005.
  • Arnao MB, Hernández-Ruiz J. 2021. Melatonin as a plant biostimulant in crops and during post-harvest: a new approach is needed. J Sci Food Agric. 101(13):5297–5304. doi: 10.1002/jsfa.11318.
  • Artur AG, Cruz MCP, Ferreira ME, Mattos VC, Yagi R. 2007. Cattle manure and liming for guanandi seedlings production. Pesq Agropec Bras. 42(6):843–850. doi: 10.1590/S0100-204X2007000600011.
  • Bento LR, Melo CA, Ferreira OP, Moreira AB, Mounier S, Piccolo A, Spaccini R, Bisinoti MC. 2019. Humic extracts of hydrochar and Amazonian dark earth: molecular characteristics and effects on maize seed germination. Sci Total Environ. 708(15):135000. doi: 10.1016/j.scitotenv.2019.135000.
  • Busato JG, Carvalho CM, Zandonadi DB, Sodré FF, Mol AR, de Oliveira, AL, Navarro RD. 2017. Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce. Environ Sci Pollut Res. 25(36):35811–35820. doi: 10.1007/s11356-017-0795-3.
  • Canellas LP, Dobbss LB, Oliveira AL, Chagas JG, Aguiar NO, Rumjanek VM, Novotny EH 2012. Chemical properties of humic matter as related to induction of plant lateral roots. Soil Sci. 63(3):312–324.
  • Canellas LP, Olivares FL, Canellas NOA, Mazzei P, Piccolo A. 2019. Humic acids increase the maize seedlings exudation yield. Chem Biol Technol Agric. 6(3):1–14. doi: 10.1186/s40538-018-0139-7.
  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR 2002. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 130:1951–.
  • Carvalho RSC, Melo MRM, Sousa FGGS, Klar AE. 2021. Desenvolvimento inicial de mudas de guanandi submetidas a dois níveis de lençol freático e doses crescentes de fósforo. Irriga. 1(3):599–612. doi: 10.15809/irriga.2021v1n3p599-612.
  • Choirunnisa LF, Solichatun S, Yunus A. 2022. Effect of vermicompost and biostarter on the growth and photosynthetic rate of Echinacea purpurea. Asian J Agric Res. 6(1):35–39. doi: 10.13057/asianjagric/g060105.
  • Ciriello E, Mori ES 2015. Rooting of guanandi (Callophyllum brasiliense CAMBESS) cuttings using indole-butyric acid. Cerne. 21(4):641–648.
  • Dobbss LB, Rumjaneck VM, Baldotto MA, Velloso ACX, Canellas LP. 2009. Caracterização química e espectroscópica de ácidos húmicos e fúlvicos isolados da camada superficial de Latossolos brasileiros [Chemical and spectroscopic characterization of humic and fulvic acids isolated from the surface layer of Brazilian Oxisols]. Rev Bras Cienc Solo. 33(1):51–63. Portuguese. doi:10.1590/S0100-06832009000100006.
  • dos Santos Pereira T, Paula AM, Ferrari LH, da Silva J, Borges Pinheiro J, Navas Cajamarca SM, Busato JG, Pupo Santos M, Zandonadi DB, Busato JG. 2021. Trichoderma-enriched vermicompost extracts reduces nematode biotic stress in tomato and bell pepper crops. Agronomy. 11(8):1655. doi: 10.3390/agronomy11081655.
  • Du Jardin P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic (Amsterdam). 196(30):3–14. doi: 10.1016/j.scienta.2015.09.021.
  • França PHT, Silva ECA, Silva TC, Brasil NA, Nogueira RJMC. 2017. Análise fisiológica em mudas de guanandi (Calophyllum brasiliense Cambess) submetidas ao déficit hídrico. ACSA. 13(4):264–269. doi: 10.30969/acsa.v13i4.886.
  • Goelzer A, Silva OBD, Santos FHM, Santos CC, Zárate NAH, Vieira MDC. 2021. Photosynthetic performance, nutrition and growth of Campomanesia xanthocarpa O. Berg in chicken manure substrate and liming. Floresta Ambient. 28(2):2–11. doi: 10.1590/2179-8087-floram-2020-0005.
  • Jindo K, Canellas LP, Albacete A, Santos LF, Rocha RLF, Baia DC, Canellas NOA, Goron TL, Olivares FL. 2020. Interaction between humic substances and plant hormones for phosphorous acquisition. Agronomy. 10(5):640–658. doi: 10.3390/agronomy10050640.
  • Lorenzi H. 1992. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil [Brazilian trees: manual for the identification and cultivation of tree plants native from Brazil]. São Paulo: Brasil: Plantarum. Portuguese.
  • Madejová J, Komadel P. 2001. Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner. 49(5):410–432. doi: 10.1346/CCMN.2001.0490508.
  • Maldonado-Magaña A, Bernabé-Antonio A, Salcedo-Pérez E, Cruz-Sosa F. 2015. In vitro regeneration of Calophyllum brasiliense Cambess: a valuable medicinal tree. Afr J Biotechnol. 14(4):2831–2835. doi: 10.5897/AJB2015.14856.
  • Mastalerczuk G, Borawska-Jarmułowicz B, Kalaji HM, Dąbrowski P, Paderewski J. 2017. Gas exchange parameters and morphological features of festulolium (Festulolium braunii K. Richert A. Camus) in response to nitrogen dosage. Photosynthetica. 55(1):20–30. doi: 10.1007/s11099-016-0665-0.
  • Monda H, Cozzolino V, Vinci G, Drosos M, Savy D, Piccolo A. 2018. Molecular composition of the Humeome extracted from different green composts and their biostimulation on early growth of maize. Plant Soil. 429(1–2):407–424. doi: 10.1007/s11104-018-3642-5.
  • Mora V, Bacaicoa V, Zamarreño AM, Aguirre E, Garnica M, Fuentes M, García-Mina JM. 2010. Action of humic acid on promotion of cucumber shoot growth involves nitrate related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol. 167(8):633–642. doi: 10.1016/j.jplph.2009.11.018.
  • Nardi S, Schiavon M, Francioso O. 2021. Molecules chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules. 26(8):2256–2276. doi: 10.3390/molecules26082256.
  • Nunes RO, Domiciano GA, Alves WS, Melo ACA, Nogueira FCS, Canellas LP, Olivares FL, Zingali RB, Soares MR. 2019. Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Sci Rep. 9(1):12019. doi: 10.1038/s41598-019-48509-2.
  • Olivares FL, Busato JG, de Paula AM, da Silva Lima L, Aguiar NO, Canellas LP. 2017. Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chem Biol Technol Agric. 4(3):1–13. doi: 10.1186/s40538-017-0112-x.
  • Oliveira VC, Joly CA. 2010. Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Trees. 24(1):185–193. doi: 10.1007/s00468-009-0392-2.
  • Pinton R, Cesco S, De Nobili M, Santi S, Varanini Z. 1997. Water and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants. Biol Fertil Soils. 26(1):23–27. doi: 10.1007/s003740050337.
  • Pinton R, Cesco S, Iacolettig G, Astolfi S, Varanini Z. 1999. Modulation of NO3/- uptake by water-extractable humic substances: involvement of root plasma membrane H+ATPase. Plant Soil. 215(2):155–161. doi: 10.1023/A:1004752531903.
  • Polyakov V, Abakumov E 2021. Assessments of organic carbon stabilization using the spectroscopic characteristics of humic acids separeted from soils of the Lena river delta. Separations. 8(6):87–95.
  • Rice JA, MacCarthy P. 1991. Statistical evaluation of the elemental composition of humic substances. Org Geochem. 17(5):635–648. doi: 10.1016/0146-6380(91)90006-6.
  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR. 2014. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron. 124:37–89.
  • Santos JLA, Araújo KV, Busato JG, Pittarello M, Leite JLB, Dobbss LB. 2022. Humic substances stimulate initial growth and reduce arsenic stress in Corymbia citriodora seedlings. Bioremediat J. 1–8. doi: 10.1080/10889868.2022.2049679.
  • Schnitzer M, Gupta UC. 1965. Determination of acidity in soil organic matter. Soil Sci Soc Am J. 29(3):274–277. doi: 10.2136/sssaj1965.03615995002900030016x.
  • Silva MAC, Santos WO, Simoura NT, Tesch JA, Ruas KF, Colodete CM, Tannure FP, Barbirato JO, Ramos AC, Dobbss LB. 2015. Ácidos húmicos de vermicomposto estimulam o crescimento in vitro de plântulas de Cattleya warneri(Orchidaceae). Rodriguésia. 66(3):759–768. Portuguese. doi:10.1590/2175-7860201566307.
  • Song XY, Spaccini R, Pan G, Piccolo A. 2013. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils. Soil Sci Soc Am J. 1:458–460. doi:10.1016/j.scitotenv.2013.04.052.
  • Spaccini R, Cozzolino V, Di Meo V, Savy D, Drosos M, Piccolo A. 2019. Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Sci Total Environ. 646:792–800. doi:10.1016/j.scitotenv.2018.07.334.
  • Spaccini R, Piccolo A, Conte P, Gerzabek MH. 2002. Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol Biochem. 34(12):1839–1851. doi: 10.1016/S0038-0717(02)00197-9.
  • Stevenson FJ. 1994. Humus chemistry: genesis, composition, reactions. New York: John Wiley & Sons.
  • Vaccaro S, Ertani A, Nebbioso A, Muscolo A, Quaggiotti S, Piccolo A, Nardi S. 2015. Humic substances stimulate maize nitrogen assimilation and amino acid metabolism at physiological and molecular level. Chem Biol Technol Agric. 2(5):1–12. doi: 10.1186/s40538-015-0033-5.
  • Verrillo MV, Salzano M, Cozzolino V, Spaccini R, Piccolo A. 2021. Bioactivity and antimicrobial properties of chemically characterized compost teas from different green composts. Waste Manag. 120:98–107. doi:10.1016/j.wasman.2020.11.013.
  • Volkov DS, Rogova OB, Proskurnin AM. 2021. Organic matter and mineral composition of silicate soils: fTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities. Agronomy. 11(9):1879. doi: 10.3390/agronomy11091879.
  • Wilson MA. 1987. NMR techniques and applications in geochemistry and soil chemistry. London, United Kingdom: Pergamon Press.
  • Zandonadi DB, Busato JG. 2012. Vermicompost humic substances: technology for converting pollution into plant growth regulators. Int J Environ Sci Eng Res. 3:73–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.