72
Views
0
CrossRef citations to date
0
Altmetric
Socioeconomics, Planning, and Management

Integrating personal laser scanning with uncrewed aerial vehicle-based photogrammetry or laser scanning for accurate stem volume estimation in temperate coniferous forests

ORCID Icon, , , &
Received 08 Jun 2023, Accepted 29 Mar 2024, Published online: 25 Apr 2024

References

  • Aicardi I, Dabove P, Lingua A, Piras M. 2016. Integration between TLS and UAV photogrammetry techniques for forestry applications. IForest - Biogeosci For. 10(1):41. doi: 10.3832/ifor1780-009.
  • Bonnet S, Lisein J, Lejeune P. 2017. Comparison of UAS photogrammetric products for tree detection and characterization of coniferous stands. Int J Remote Sens. 38(19):5310–5337. doi: 10.1080/01431161.2017.1338839.
  • Camarretta N, Harrison PA, Bailey T, Potts B, Lucieer A, Davidson N, Hunt M. 2020. Monitoring forest structure to guide adaptive management of forest restoration: a review of remote sensing approaches. New Forest. 51(4):573–596. doi: 10.1007/s11056-019-09754-5.
  • Cao L, Liu H, Fu X, Zhang Z, Shen X, Ruan H. 2019. Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests. Forests. 10(2):145. doi: 10.3390/f10020145.
  • Chen Q, Baldocchi D, Gong P, Kelly M. 2006. Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data. Photogramm Eng Remote Sens. 72(8):923–932. doi: 10.14358/PERS.72.8.923.
  • Chen Q, Gong P, Baldocchi D, Tian YQ. 2007. Estimating basal area and stem volume for individual trees from lidar data. Photogrammetric Eng Remote Sens. 73(12):1355–1365. doi: 10.14358/pers.73.12.1355.
  • Chen S, Liu H, Feng Z, Shen C, Chen P, Ribeiro da Silva C. 2019. Applicability of personal laser scanning in forestry inventory. PloS One. 14(2):e0211392. doi: 10.1371/journal.pone.0211392.
  • Forest Agency of Japan. 1970. Timber volume tables for Western Japan. Tokyo, Japan: Japan Forestry Investigation Committee.
  • Forest Agency of Japan. Digitalization of forest resource information and promotion of smart forestry [internet]. [accessed 2024 Feb 5 2024]. https://www.rinya.maff.go.jp/j/keikaku/smartforest/smart_forestry.html
  • Goutte C, Gaussier E. 2005. A probabilistic interpretation of precision, recall and F-Score, with implication for evaluation. Lect Notes Comput Sc. 345–359. doi: 10.1007/978-3-540-31865-1_25.
  • Guerra-Hernández J, Cosenza DN, Rodriguez LCE, Silva M, Tomé M, Díaz-Varela RA, González-Ferreiro E. 2018. Comparison of ALS- and UAV(SfM)-derived high-density point clouds for individual tree detection in eucalyptus plantations. Int J Remote Sens. 39(15–16):5211–5235. doi: 10.1080/01431161.2018.1486519.
  • Hosoda K, Takahashi T, Kitahara F. 2012. Reconsideration of the size and shape of the survey area in the selective sample plot method. J Jpn For Soc. 94(3):105–111. doi: 10.4005/jjfs.94.105.
  • Hyyppä E, Yu X, Kaartinen H, Hakala T, Kukko A, Vastaranta M, Hyyppä J. 2020. Comparison of backpack, handheld, under-canopy UAV, and above-canopy UAV laser scanning for field reference data collection in boreal forests. Remote Sens. 12(20):3327. doi: 10.3390/rs12203327.
  • Kankare V, Vastaranta M, Holopainen M, Räty M, Yu X, Hyyppä J, Hyyppä H, Alho P, Viitala R. 2013. Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sens-basel [Internet]. 5(5):2257 2274. doi: 10.3390/rs5052257.
  • Kira T, Shidei T. 1967. Primary production and turnover of organic matter in different forest ecosystems of the western pacific. Jpn J Ecol. 17(2):70–87. doi: 10.18960/seitai.17.2_70.
  • Kuželka K, Slavík M, Surový P. 2020. Very high density point clouds from UAV laser scanning for automatic tree stem detection and direct diameter measurement. Remote Sens-Basel. 12(8):1236. doi: 10.3390/rs12081236.
  • Liang X, Hyyppä J. 2013. Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels. Sensors. 13(2):1614–1634. doi: 10.3390/s130201614.
  • Liang X, Kukko A, Kaartinen H, Hyyppä J, Yu X, Jaakkola A, Wang Y. 2014. Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services. Sensors. 14(1):1228–1248. doi: 10.3390/s140101228.
  • Liu K, Shen X, Cao L, Wang G, Cao F. 2018. Estimating forest structural attributes using UAV-LiDAR data in ginkgo plantations. ISPRS J Photogramm. 146:465–482. doi: 10.1016/j.isprsjprs.2018.11.001.
  • Maas H‐, Bienert A, Scheller S, Keane E. 2008. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int J Remote Sens. 29(5):1579–1593. doi: 10.1080/01431160701736406.
  • Moe KT, Owari T, Furuya N, Hiroshima T, Morimoto J. 2020. Application of UAV photogrammetry with LiDAR data to facilitate the estimation of tree locations and DBH values for high-value timber species in northern Japanese mixed-wood forests. Remote Sens-Basel. 12(17):2865. doi: 10.3390/rs12172865.
  • Mohan M, Silva CA, Klauberg C, Jat P, Catts G, Cardil A, Hudak AT, Dia M. 2017. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests. 8(9):340. doi: 10.3390/f8090340.
  • Olofsson K, Holmgren J, Olsson H. 2014. Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm. Remote Sens. 6(5):4323–4344. doi: 10.3390/rs6054323.
  • Oono K, Tsuyuki S. 2018. Estimating individual tree diameter and stem volume using airborne LiDAR in saga prefecture, Japan. Open J For. 8(02):205–228. doi: 10.4236/ojf.2018.82015.
  • Picos J, Bastos G, Míguez D, Alonso L, Armesto J. 2020. Individual tree detection in a eucalyptus plantation using unmanned aerial vehicle (UAV)-LiDAR. Remote Sens. 12(5):885. doi: 10.3390/rs12050885.
  • R Core Team. 2022. R: a language and environment for statistical computing [internet]. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Rogers SR, Manning I, Livingstone W. 2020. Comparing the spatial accuracy of digital surface models from four unoccupied aerial systems: photogrammetry versus LiDAR. Remote Sens-Basel. 12(17):2806. doi: 10.3390/rs12172806.
  • Shimizu K, Nishizono T, Kitahara F, Fukumoto K, Saito H. 2022. Integrating terrestrial laser scanning and unmanned aerial vehicle photogrammetry to estimate individual tree attributes in managed coniferous forests in Japan. Int J Appl Earth Obs. 106:102658. doi: 10.1016/j.jag.2021.102658.
  • Sokolova M, Japkowicz N, Szpakowicz S. 2006. Beyond accuracy, F-Score and ROC: a family of discriminant measures for performance evaluation. Lect Notes Comput Sc. 1015–1021. doi: 10.1007/11941439_114.
  • Takahashi T, Yamamoto K, Senda Y, Tsuzuku M. 2005. Predicting individual stem volumes of sugi (cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J Forest Res-jpn. 10(4):305–312. doi: 10.1007/s10310-005-0150-2.
  • Tsuchiya B, Mochizuki H, Hoshikawa T, Suzuki S. 2023. Error estimation of trunk diameter and tree height measured with a backpack LiDAR system in Japanese plantation forests. Landsc Ecol Eng. 19(1):169–177. doi: 10.1007/s11355-022-00530-w.
  • Wallace L, Lucieer A, Malenovský Z, Turner D, Vopěnka P. 2016. Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests. 7(3):62. doi: 10.3390/f7030062.
  • Wang Y, Lehtomäki M, Liang X, Pyörälä J, Kukko A, Jaakkola A, Liu J, Feng Z, Chen R, Hyyppä J. 2019. Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J Photogramm. 147:132–145. doi: 10.1016/j.isprsjprs.2018.11.008.
  • West PW. 2015. Tree and forest measurement. doi: 10.1007/978-3-319-14708-6.
  • White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P. 2016. Remote sensing technologies for enhancing forest inventories: a review. Can J Remote Sens. 42(5):619–641. doi: 10.1080/07038992.2016.1207484.
  • Wu X, Shen X, Cao L, Wang G, Cao F. 2019. Assessment of individual tree detection and canopy cover estimation using unmanned aerial vehicle based light detection and ranging (UAV-LiDAR) data in planted forests. Remote Sens-Basel. 11(8):908. doi: 10.3390/rs11080908.
  • Young DJN, Koontz MJ, Weeks J. 2022. Optimizing aerial imagery collection and processing parameters for drone‐based individual tree mapping in structurally complex conifer forests. Methods Ecol Evol. 13(7):1447–1463. doi: 10.1111/2041-210x.13860.
  • Yu X, Hyyppä J, Vastaranta M, Holopainen M, Viitala R. 2011. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS J Photogramm. 66(1):28–37. doi: 10.1016/j.isprsjprs.2010.08.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.