60
Views
0
CrossRef citations to date
0
Altmetric
Forest Environment

Carbon dynamics of organic layer in three forest stands dominated by different tree species

& ORCID Icon
Received 01 Jul 2023, Accepted 13 May 2024, Published online: 26 May 2024

References

  • Ataka M, Kominami Y, Jomura M, Yoshimura K, Miyama T, Kosugi Y, Tani M. 2015. CO2 efflux from decomposing leaf litter stacks is influenced by the vertical distribution of leaf litter water content and its temporal variation. J Agric Meteorol. 71(4):263–270. doi: 10.2480/agrmet.D-14-00041.
  • Borken W, Ahrens B, Schulz C, Zimmermman L. 2011. Site-to-site variability and temporal trends of DOC concentrations and fluxes in temperate forest soils. Glob Chang Bio. 17(7):2428–2443. doi: 10.1111/j.1365-2486.2011.02390.x.
  • Borken W, Beese F. 2005. Soil respiration in pure and mixed stands of European beech and Norway spruce following removal of organic horizons. Can J For Res. 35(11):2756–2764. doi: 10.1139/X05-192.
  • Chen S, Yoshitake S, Iimura Y, Asai C, Ohtsuka T. 2017. Dissolved organic carbon (DOC) input to the soil: DOC fluxes and their partitions during the growing season in a cool-temperate broad-leaved deciduous forest, central Japan. Ecol Res. 32:713–724. doi: 10.1007/s11284-017-1488-6.
  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pe’rez-Harguindeguy N, et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett. 11:1065–1071. doi: 10.1111/j.1461-0248.2008.01219.x.
  • DeForest JL, Chen J, McNulty SG. 2009. Leaf litter is an important mediator of soil respiration in an oak-dominated forest. Int J Biometeorol. 53(2):127–134. doi: 10.1007/s00484-008-0195-y.
  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science. 263(5144):185–190. doi: 10.1126/science.263.5144.185.
  • Fujii K, Hartono A, Funakawa S, Uemura M, Kosaki T. 2011. Fluxes of dissolved organic carbon in three tropical secondary forests developed on serpentine and mudstone. Geoderma. 163(1–2):119–126. doi: 10.1016/j.geoderma.2011.04.012.
  • Jandl R, Sollins P. 1997. Water-extractable soil carbon in relation to the belowground carbon cycle. Biol Fertil Soils. 25(2):196–201. doi: 10.1007/s003740050303.
  • Japan Meteorological Agency. 2022. [accessed 2022 Nov 1]. https://www.data.jma.go.jp/stats/etrn/index.php.
  • Jevon FV, Polussa A, Lang AK, Munger JW, Wood SA, Wieder WR, Bradford MA. 2022. Patterns and controls of aboveground litter inputs to temperate forests. Biogeochemistry. 161(3):335–352. doi: 10.1007/s10533-022-00988-8.
  • Kato Y, Tomotsune M, Shiote F, Koyama Y, Koizumi H, Yoshitake S. 2021. Comparison of inter-annual variation in net primary production among three forest types in the same region over 7 years. J For Res. 26(2):110–115. doi: 10.1080/13416979.2020.1857006.
  • Kuzyakov Y. 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem. 38(3):425–448. doi: 10.16/j.soilbio.2005.08.020.
  • Lal R. 2005. Forest soils and carbon sequestration. For Ecol And Manag. 220(1–3):242–258. doi: 10.1016/j.foreco.2005.08.015.
  • Liu C, Westman CJ, Berg B, Kutsch W, Wang GZ, Man R, Ilvesniemi R. 2004. Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecol Biogeogr. 13(2):105–114. doi: 10.1111/j.1466-882X.2004.00072.x.
  • Ludwig B, Hell B, Flessa H, Beese F. 2000. Use of 13C and 15N mass spectrometry to study the decomposition of Calamagrostis epigeios in soil column experiments with and without ash additions. Isoropes Environ Health Stud. 36(1):49–61. doi: 10.1080/10256010008032932.
  • Malhi Y, Baldocchi DD, Jarvis PG. 1999. The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environ. 22(6):715–740. doi: 10.1046/j.1365-3040.
  • McDowell WH, Likens GE. 1988. Origin, composition and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol Monogr. 58(3):177–195. doi: 10.2307/2937024.
  • McDowell WH, Wood T. 1984. Podzolization: soil processes control dissolved organic carbon concentrations in stream water. Soil Sci. 137:23–32. doi: 10.1097/00010694-198401000-00004.
  • Merckx R, Brans K, Smolders E. 2001. Decomposition of dissolved organic carbon after soil drying and rewetting as an indicator of metal toxicity in soils. Soil Biol Biochem. 33:235–240. doi: 10.1016/S0038-0717(00)00135-8.
  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E. 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry. 52(2):173–205. doi: 10.1023/A:1006441620810.
  • Michel K, Matzner E, Dignac MF, Knabner IK. 2006. Properties of dissolved organic matter related to soil organic matter quality and nitrogen additions in Norway spruce forest floors. Geoderma. 130(3–4):250–264. doi: 10.1016/j.geoderma.2005.01.023.
  • Mo W, Lee MS, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H. 2005. Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agric For Meteorol. 134(1–4):81–94. doi: 10.1016/j.agrformet.2005.08.015.
  • Mundra S, Kjønaas OJ, Morgado LN, Krabberød AK, Ransedokken Y, Kauserud H. 2021. Soil depth matters: shift in composition and inter-kingdom co-occurrence patterns of microorganisms in forest soils. FEMS Microbiol. 97(3):fiab022. doi: 10.1093/femsec/fiab022.
  • Smolander A, Kitunen V. 2011. Comparison of tree species effects on microbial C and N transformations and dissolved organic matter properties in the organic layer of boreal forests. Appl Soil Ecol. 49:224–233. doi: 10.1016/j.apsoil.2011.05.002.
  • Solinger S, Kalbitz K, Matzner E. 2001. Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest. Biogeochemistry. 55(3):327–349. doi: 10.1023/A:1011848326013.
  • Tomotsune M, Yoshitake S, Watanabe S, Koizumi H. 2013. Separation of root and heterotrophic respiration within soil respiration by trenching, root biomass regression, and root excising methods in a cool-temperate deciduous forest in Japan. Ecol Res. 28:259–269. doi: 10.1007/s11284-012-1013-x.
  • Wiesmeier M, Prietzel J, Barthold F, Spörlein P, Geuß U, Hangen E, Reischl A, Schilling B, Lützow MV, Knabner IK. 2013. Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria) – Implications for carbon sequestration. For Ecol Manag. 295:162–172. doi: 10.1016/j.foreco.2013.01.025.
  • Wunderlich S, Schulz C, Griinmeisen W, Borken W. 2012. Carbon fluxes in coniferous and deciduous forest soils. Plant Soil. 357(1–2):355–368. doi: 10.1007/s11104-012-1158-y.
  • Yoshitake S, Uchida M, Koizumi H, Kanda H, Nakatsubo T. 2010. Production of biological soil crusts in the early stage of primary succession on a High Arctic glacier foreland. New Phytol. 186:451–460. doi: 10.1111/j.1469-8137.2010.03180.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.