0
Views
0
CrossRef citations to date
0
Altmetric
Silviculture and Plant Sciences

Flooding tolerance, biomass production, and leaf nitrogen assimilatory efficiency in 29 diverse willows (Salix spp.) genotypes during early growth

, , & ORCID Icon
Received 21 Nov 2023, Accepted 28 Jul 2024, Published online: 05 Aug 2024

References

  • Achinelli F, Doffo G, Barotto AJ, Luquez V, Monteoliva S. 2018. Effects of irrigation, plantation density and clonal composition on woody biomass quality for bioenergy in a short rotation culture system with willows (salix spp.). Rev Árvore. 42(2):e420210. doi: 10.1590/1806-90882018000200010.
  • Cerrillo T, Rodríguez ME, Achinelli F, Doffo G, Luquez VMC. 2013. Do greenhouse experiments predict willow responses to long-term flooding events in the field? Bosque (Valdivia). 34(1):17–18. doi: 10.4067/S0717-92002013000100009.
  • Colmer TD, Voesenek LACJ. 2009. Flooding tolerance: suites of plants traits in variable environments. Func Plant Biol. 36(8):665–681. doi: 10.1071/FP09144.
  • Dickmann D, Kuzovkina J. 2014. Poplars and willows of the world, with emphasis on silviculturally important species. In: Isebrands J, and Richardson J, editors. Poplars and willows. Trees for Society and the environment. Wallingford, UK: CAB International. p. 8–83.
  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. 2022. InfoStat versión 2022. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba. Argentina. [accessed 2023 Nov 10]. https://www.infostat.com.ar/.
  • Doffo G, Monteoliva SE, Rodríguez ME, Luquez VMC. 2017. Physiological responses to alternative flooding and drought stress episodes in two willow (salix spp.) clones. Can J For Res. 47(2):174–182. doi: 10.1139/cjfr-2016-0202.
  • Doffo GN, Rodríguez ME, Olguín FY, Cerrillo T, Luquez VMC. 2018. Resilience of willows (salix spp.) differs between families during and after flooding according to floodwater depth. Trees. 32(6):1779–1788. doi: 10.1007/s00468-018-1751-7.
  • Du K, Shen B, Xu L, Tu B. 2008. Estimation of genetic variances in flood tolerance of poplar and selection of resistant F1 generations. Agroforest Syst. 74(3):243–257. doi: 10.1007/s10457-008-9112-y.
  • Garssen A, Baatrup-Pedersen A, Voesenek LACJ, Verhoeven JTA, Soons M. 2015. Riparian plant community responses to increased flooding: a meta-analysis. Glob Change Biol. 21(8):2881–2890. doi: 10.1111/gcb.12921.
  • Glenz C, Schlaepfer R, Iorgulescu I, Kienast F. 2006. Flooding tolerance of central European tree and shrubs species. For Ecol Manag. 235(1–3):1–13. doi: 10.1016/j.foreco.2006.05.065.
  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia. 126(4):457–461. doi: 10.1007/s004420100628.
  • Herrera A, Tezara W, Rengifo E, Flores S. 2008. Changes with seasonal flooding in sap flow of the tropical flood-tolerant tree species, Campsiandra laurifolia. Trees. 22(4):551–558. doi: 10.1007/s00468-008-0215-x.
  • Iwanaga F, Yamamoto F. 2008. Effects of flooding depth on growth, morphology and photosynthesis in alnus japonica species. New For. 35(1):1–14. doi: 10.1007/s11056-007-9057-4.
  • Kirk PL. 1950. Kjeldahl method for total nitrogen. Anal Chem. 22(2):354–358. doi: 10.1021/ac60038a038.
  • Koç I, Nzokou P, Cregg B. 2022. Biomass allocation and nutrient use efficiency in response to water stress: insight from experimental manipulation of balsam fir, concolor fir and white pine transplants. New For. 53(5):915–933. doi: 10.1007/s11056-021-09894-7.
  • Kollert W, Carle J, Rosengren L. 2014. Poplars and willows for rural livelihoods and sustainable development. In: Isebrands J, and Richardson J, editors. Poplars and willows. Trees for society and the environment. Wallingford, UK: CAB International. p. 557–602 .
  • Kozlowski TT. 1997. Responses of woody plants to flooding and salinity. Tree physiol monograph No 1. https://academic.oup.com/treephys/article/17/7/490/1617839.
  • Kreuzwieser J, Fürniss S, Rennenberg H. 2002. Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. Plant Cell Environ. 25(8):1039–1049. doi: 10.1046/j.1365-3040.2002.00886.x.
  • Kreuzwieser J, Rennenberg H. 2014. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ. 37(10):2245–2259. doi: 10.1111/pce.12310.
  • Lambers H, Stuart Chapin F III , Pons TL. 2008. Plant physiological ecology. Media, LLC: Springer Science Business.
  • Leggett JE, Frere MH. 1971. Growth and nutrient uptake by soybean plants in nutrient solutions of graded concentrations. Plant Physiol. 48(4):457–460. doi: 10.1104/pp.48.4.457.
  • Loreti E, Perata P. 2020. The many facets of hypoxia in plants. Plants. 9(6):745. doi: 10.3390/plants9060745.
  • Markus – Michalczyk H, Hanelt D, Jensen K. 2016. Effects of tidal flooding on juvenile willows. Estuaries And Coasts. 39(2):397–405. doi: 10.1007/s12237-015-0014-8.
  • Milla-Moreno EA, McKown AD, Guy RD, Soolanayakanahally RY. 2016. Leaf mass per area predicts palisade structural properties linked to mesophyll conductance in balsam poplar (populus balsamifera L.). Botany. 94(3):225–239. doi: 10.1139/cjb-2015-0219.
  • Monclus R, Dreyer E, Delmotte FM, Villar M, Delay D, Boudouresque E, Petit JM, Marron N, Bréchet C, Brignolas F. 2005. Productivity, leaf traits and carbon isotope discrimination in 29 Populus deltoides × P. nigra clones. New Phytol. 167(1):53–62. doi: 10.1111/j.1469-8137.2005.01407.x.
  • Mozo I, Rodríguez ME, Monteoliva S, Luquez VMC. 2021. Floodwater depth causes different physiological responses during post-flooding in willows. Front Plant Sci. 12:575090. doi: 10.3389/fpls.2021.575090.
  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in Leaf Mass per Area (LMA): a meta-analysis. New Phytol. 182(3):565–588. doi: 10.1111/j.1469-8137.2009.02830.x.
  • Robinson KM, Karp A, Taylor G. 2004. Defining leaf traits linked to yield in short-rotation coppice salix. Biomass Bioenergy. 26(5):417–431. doi: 10.1016/j.biombioe.2003.08.012.
  • Rodriguez ME, Achinelli F, Luquez VMC. 2015. Leaf traits related to productivity in Populus deltoides during the post-flooding period. Trees. 29(3):953–960. doi: 10.1007/s00468-015-1189-0.
  • Rodríguez ME, Doffo GN, Cerrillo T, Luquez VMC. 2018. Acclimation of cuttings of willow genotypes to flooding depth level. New For. 49(3):415–427. doi: 10.1007/s11056-018-9627-7.
  • Rodríguez ME, Lauff D, Cortizo S, Luquez VMC. 2020. Variability in flooding tolerance, growth and leaf traits in a Populus deltoides intraspecific progeny. Tree Physiol. 40(1):19–29. doi: 10.1093/treephys/tpz128.
  • Rodríguez ME, Luquez VMC. 2016. Poplar and willows responses to flooding stress. In: Desmond M, editor. Poplars and willows: cultivation, applications and environmental benefits. Hauppauge (NY), USA: Nova Science Publisher; p. 103–130.
  • Rodríguez ME, Mozo I, Cortizo S, Cappa EP, Luquez VMC. 2021. Early rooting and flooding tolerance in cuttings from a Populus deltoides full-sib family under greenhouse conditions. Can J For Res. 51(5):732–741. doi: 10.1139/cjfr-2020-0137.
  • Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR. 2009. Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (populus balsamifera L.). Plant Cell Environ. 32(12):1821–1832. doi: 10.1111/j.1365-3040.2009.02042.x.
  • Tharakan PJ, Volk TA, Nowak CA, Abrahamson LP. 2005. Morphological traits of 30 willow clones and their relationship to biomass production. Can J For Res. 35(2):421–431. doi: 10.1139/X04-195.
  • Tumpa K, Šatovic Z, Vidakovic A, Idžojtic M, Stipetic R, Poljak I. 2022. Population variability of almond-leaved willow (salix triandra L.) based on the leaf morphometry: isolation by distance and environment explain phenotypic diversity. Forests. 13(3):420. doi: 10.3390/f13030420.
  • Voesenek LACJ, Bailey-Serres J. 2015. Flood adaptive traits and process: an overview. New Phytol. 206(1):57–73. doi: 10.1111/nph.13209.
  • Weih M, Bonosi L. 2009. Assessment of genotype ranking in long-term biomass production of salix based on juvenile plant traits: breeding implications. Bioenerg Res. 2(1–2):29–36. doi: 10.1007/s12155-009-9031-4.
  • Weih M, Nordh NE. 2005. Determinants of biomass production in hybrid willows and prediction of field performance from pot studies. Tree Physiol. 25(9):1197–1206. doi: 10.1093/treephys/25.9.1197.
  • Wikberg J, Ögren E. 2004. Interrelationships between water use and growth traits in biomass-producing willows. Trees - Struct Function. 18(1):70–76. doi: 10.1007/s00468-003-0282-y.
  • Yuancai Q, Arif M, Dong Z, Ting W, Qin Y, Bo P, Peng W, Wei H. 2022. The effect of hydrological regimes on the concentrations of nonstructural carbohydrates and organic acids in the roots of Salix matsudana in the Three Gorges Reservoir, China. Ecol Indic. 142:109176. doi: 10.1016/j.ecolind.2022.109176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.