1,532
Views
8
CrossRef citations to date
0
Altmetric
Crop Physiology

Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton

, , , , &
Pages 165-172 | Received 18 Sep 2014, Accepted 29 Jun 2015, Published online: 27 Feb 2016

References

  • Agele, S. O., Maraiyesa, I. O., Adeniji, I. A. (2007). Effects of variety and row spacing on radiation interception, partitioning of dry matter and seed set efficiency in late season sunflower (Helianthus annuus L.) in a humid zone of nigeria. African Journal of Agricultural Research, 2, 80–88.
  • Brodrick, R., Bange, M. P., Milroy, S. P., & Hammer, G. L. (2013). Physiological determinants of high yielding ultra-narrow row cotton: Canopy development and radiation use efficiency. Field Crops Research, 148, 86–94.10.1016/j.fcr.2012.05.008
  • Fujita, M., Ookawa, T., & Hirasawa, T., (2002). Effects of soil moisture conditions before flowering on photosynthesis rate, nitrogen accumulation and cytokinin activity in xylem exudates during ripening in maize plants. Japanese Journal of Crop Science, 71, 170–171.
  • Gwathmey, C. O., & Clement, J. D. (2010). Alteration of cotton source-sink relations with plant population density and mepiquat chloride. Field Crops Research, 116, 101–107.10.1016/j.fcr.2009.11.019
  • Heitholt, J. J., Pettigrew, W., & Meredith, W., (1992). Light interception and lint yield of narrow-row cotton. Crop Science, 32, 728–733.10.2135/cropsci1992.0011183X003200030030x
  • Jiang, C. Z., Hirasawa, T., & Isihara, K. (1988a). Physiological and ecological characteristics of high yielding varieties in rice plants. I. Yield and dry matter production. Japanese journal of crop science, 57, 132–138.10.1626/jcs.57.132
  • Jiang, C. Z., Hirasawa, T., & Isihara, K. (1988b). Physiological and ecological characteristics of high yielding varieties in rice plants. II. Leaf photosynthetic rates. Japanese Journal of Crop Science, 57, 139–145.10.1626/jcs.57.139
  • Kim, S. H., Sicher, R. C., Bae, H., Gitz, D. C., Baker, J. T.Timlin, J. D., & Reddy, V. R. (2006). Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology, 12, 588–600.10.1111/gcb.2006.12.issue-3
  • Kim, S. H., Gitz, D., Sicherb, R. C., Baker, J. T., Timlin, D. J., & Reddy, V. R. (2007). Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany, 61, 224–236.10.1016/j.envexpbot.2007.06.005
  • Maddonni, G. A., Cirilo, A. G., & Otegul, M. E. (2006). Row width and maize grain yield. Agronomy Journal, 98, 1532–1543.10.2134/agronj2006.0038
  • Liu, T. D., & Song, F. B. (2012). Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns. Photosynthetica, 50, 215–222.10.1007/s11099-012-0011-0
  • Ma, B. L., & Dwyer, L. (1998). Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence. Plant and Soil, 199, 283–291.10.1023/A:1004397219723
  • Makino, A., Mae, T., & Ohira, K., (1984). Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant and Cell Physiology, 25, 429–437.
  • Makino, A., Mae, T., & Ohira, K., (1985). Photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase in rice leaves from emergence through senescence. Quantitative analysis by carboxylation/oxygenation and regeneration of ribulose-1,5-bisphosphate. Planta, 166, 414–420.10.1007/BF00401181
  • Mattera, J., Romero, L. A., Cuatrin, A. L., Cornaglia, P. S., & Grimoldi, A. A (2013). Yield components, light interception and radiation use efficiency of lucerne (Medicago sativa L.) in response to row spacing. European Journal of Agronomy, 45, 87–95.10.1016/j.eja.2012.10.008
  • Murata, Y. (1961). Studies on the photosynthesis of rice plants and its culture significance. Bulletin of the National Institute of Agricultural Sciences (Japan), D9, 1–169.
  • Nakagami, K., Ookawa, T., & Hirasawa, T. (2004). Effects of a reduction in soil moisture from one month before flowering through ripening on dry matter production and ecophysiological characteristics of wheat plants. Plant Production Science, 7, 143–154.10.1626/pps.7.143
  • Nakamura, E., Ookawa, T., Ishihara, K. & Hirasawa, T. (2003). Effects of soil moisture depletion for one month before flowering on dry matter production and ecophysiological characteristics of wheat plants in wet soil during grain filling. Plant Production Science, 6, 195–205.10.1626/pps.6.195
  • Ookawa, T., Naruoka, Y., Sayama, A. & Hirasawa, T. (2004). Cytokinin effects on ribulose-1,5-bisphosphate carboxylase/oxygenase and nitrogen partitioning in rice during ripening. Crop Science, 44, 2107–2115.10.2135/cropsci2004.2107
  • San-oh, Y., Sugiyama, T., Yoshita, D., Ookawa, T. & Hirasawa, T. (2006). The effect of planting pattern on the rate of photosynthesis and related processes during ripening in rice plants. Field Crops Research, 96, 113–124.10.1016/j.fcr.2005.06.002
  • Su, P. X., Xie, T. T., & Ding, S. S. (2009). Experimental studies on high-yield cluster cultivation of cotton in the Hexi Corridor oases of northwestern China. Agricultural Research in the Arid Areas, 27, 108–113.
  • Tarkalson, D. D., King, B. A., Biorneberg, D. L., & Taberna, J. P. (2012). Effects of planting configuration and in-row plant spacing on photosynthetically active radiation interception for three irrigated potato cultivars. Potato Research, 55, 41–58.10.1007/s11540-011-9205-2
  • Wang, F. H., Wang, X. Q., & Ken, S. (2004). Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China. Field Crops Research, 87, 35–42.
  • Xie, T. T., Su, P. X., Zhou, Z. J., Zhang, H. N., & Li, S. J. (2014). Effect of cluster planting on field microclimate and yield of cotton. Acta Agriculture Boreali-Occident Sin, 23, 55–61.
  • Yang, W. P., Guo, T. C., Liu, S. B., Wang, C. Y., Wang, Y. H., & Ma, D. Y. (2008). Effects of row spacing in winter wheat on canopy structure and microclimate in later growth stage. Journal of Plant Ecology, 32, 485–490.