2,777
Views
6
CrossRef citations to date
0
Altmetric
Crop Morphology

Effects of anti-auxins on secondary aerenchyma formation in flooded soybean hypocotyls

, , , , , & show all
Pages 154-160 | Received 15 Apr 2015, Accepted 28 Aug 2015, Published online: 27 Feb 2016

References

  • Bacanamwo, M., & Purcell, L. C. (1999). Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Science, 39, 143–149.10.2135/cropsci1999.0011183X003900010023x
  • Campanoni, P., & Nick, P. (2005). Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiology, 137, 939–948.10.1104/pp.104.053843
  • Chen, L. M., Cheng, J. T., Chen, E. L., Yiu, T. J., & Liu, Z. H. (2002). Naphthaleneacetic acid suppresses peroxidase activity during the induction of adventitious roots in soybean hypocotyls. Journal of Plant Physiology, 159, 1349–1354.10.1078/S0176-1617(04)70364-8
  • Chou, C. H., Huang, Y. C., & Liu, Z. H. (2010). Peroxidase genes differentially respond to auxin during the formation of adventitious roots in soybean hypocotyls. Plant Growth Regulation, 60, 151–161.10.1007/s10725-009-9431-7
  • Fraser, L. (1931). The reaction of Viminaria denudata to increased water content of the soil. Proceedings of the Linnean Society of New South Wales, 56, 391–406.
  • Galston, A. W. (1947). The effect of 2,3,5-triiodobenzoic acid on the growth and flowering of soybeans. American Journal of Botany, 34, 356–360.10.2307/2437695
  • Gray, W. M., Östin, A., Sandberg, G., Romano, C. P., & Estelle, M. (1998). High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of American, 95, 7197–7202.10.1073/pnas.95.12.7197
  • Hattori, R., Matsumura, A., Yamawaki, K., Tarui, A., & Daimon, H. (2013). Effects of flooding on arbuscular mycorrhizal colonization and root-nodule formation in different roots of soybeans. Agricultural Science, 4, 673–677.
  • Henshaw, T. L., Gilbert, R. A., Scholberg, J. M. S., & Sinclair, T. R. (2007). Soya bean (Glycine max L. Merr.) genotype response to early-season flooding: I. Root and nodule development. Journal of Agronomy and Crop Science, 193, 177–188.10.1111/jac.2007.193.issue-3
  • Jodinskienė, M., & Anisimovienė, N. (2007). Peculiarities of two different IAA binding sites functioning in kidney bean hypocotyl cell plasmalemma. Biologija, 53, 44–47.
  • Justin, S. H. F. W., & Armstrong, W. (1987). The anatomical characteristics of roots and plant response to soil flooding. New Phytologist, 106, 465–495.10.1111/nph.1987.106.issue-3
  • Kaneyasu, T., Kobayashi, A., Nakayama, M., Fujii, N., Takahashi, H., & Miyazawa, Y. (2007). Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. Journal of Experimental Botany, 58, 1143–1150.10.1093/jxb/erl274
  • Katekar, G. F., & Geissler, A. E. (1980). Auxin transport inhibitors: IV. Evidence of a common mode of action for a proposed class of auxin transport inhibitors: the phytotropins. Plant Physiology, 66, 1190–1195.10.1104/pp.66.6.1190
  • Kawano, N., Kawano, T., & Lapeyrie, F. (2003). Inhibition of the indole-3-acetic acid-induced epinastic curvature in tobacco leaf strips by 2,4-dichlorophenoxyacetic acid. Annals of Botany, 91, 465–471.10.1093/aob/mcg043
  • Laňková, M., Smith, R. S., Pešek, B., Kubeš, M., Zažímalová, E., Petrášek, J., & Hoyerová, K. (2010). Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. Journal of Experimental Botany, 61, 3589–3598.
  • Leopold, A. C., & Klein, W. H. (1951). Maleic hydrazide as an anti-auxin. Science, 114, 9–10.10.1126/science.114.2949.9
  • Mattsson, J., Sung, Z. R., & Berleth, T. (1999). Responses of plant vascular systems to auxin transport inhibition. Development, 126, 2979–2991.
  • Ni, D. A., Wang, L. J., Xu, Z. H., & Xia, Z. A. (1999). Foliar modifications induced by inhibition of polar transport of auxin. Cell Research, 9, 27–35.10.1038/sj.cr.7290003
  • Oono, Y., Ooura, C., Rahman, A., Aspuria, E. T., Hayashi, K., Tanaka, A., & Uchimiya, H. (2003). p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiology, 133, 1135–1147.10.1104/pp.103.027847
  • Ottenschläger, I., Wolff, P., Wolverton, C., Bhalerao, R. P., Sandberg, G., Ishikawa, H., … Palme, K. (2003). Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proceedings of the National Academy of Sciences of the United States of American, 100, 2987–2991.10.1073/pnas.0437936100
  • Parry, G., Delbarre, A., Marchant, A., Swarup, R., Napier, R., Perrot-Rechenmann, C., & Bennett, M. J. (2001). Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. The Plant Journal, 25, 399–406.10.1046/j.1365-313x.2001.00970.x
  • Rhine, M. D., Stevens, G., Shannon, G., Wrather, A., & Sleper, D. (2010). Yield and nutritional responses to waterlogging of soybean cultivars. Irrigation Science, 28, 135–142.10.1007/s00271-009-0168-x
  • Samantarai, B., & Nanda, B. K. (1979). Evaluation of the role of hormonal factors in secondary growth of dicots. The Botanical Magazine Tokyo, 92, 13–22.10.1007/BF02488297
  • Shimamura, S., Mochizuki, T., Nada, Y., & Fukuyama, M. (2002). Secondary aerenchyma formation and its relation to nitrogen fixation in root nodules of soybean plants (Glycine max) grown under flooded conditions. Plant Production Science, 5, 294–300.10.1626/pps.5.294
  • Shimamura, S., Mochizuki, T., Nada, Y., & Fukuyama, M. (2003). Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant and Soil, 251, 351–359.10.1023/A:1023036720537
  • Shimamura, S., Yamamoto, R., Nakamura, T., Shimada, S., & Komatsu, S. (2010). Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Annals of Botany, 106, 277–284.10.1093/aob/mcq123
  • Shimamura, S., Yoshioka, T., Yamamoto, R., Hiraga, S., Nakamura, T., Shimada, S., & Komatsu, S. (2014). Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Production Science, 17, 131–137.10.1626/pps.17.131
  • Smirnoff, N., & Crawford, R. M. M. (1983). Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Annals of the Botany, 51, 237–249.
  • Takahashi, H., Miyazawa, H., & Fujii, N. (2009). Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. Plant Molecular Biology, 69, 489–502.10.1007/s11103-008-9438-x
  • Thomas, A. L., Guerreiro, S. M. C., & Sodek, L. (2005). Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Annals of Botany, 96, 1191–1198.10.1093/aob/mci272
  • Tuominen, H., Puech, L., Fink, S., & Sundberg, B. (1997). A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in in hybrid aspen. Plant Physiology, 115, 577–585.
  • Uggla, C., Moritz, T., Sandberg, G., & Sundberg, B. (1996). Auxin as a positional signal in pattern formation in plants. Proceedings of the National Academy of Sciences of the United States of American, 93, 9282–9286.10.1073/pnas.93.17.9282
  • Vidoz, M. L., Loreti, E., Mensuali, A., Alpi, A., & Perata, P. (2010). Hormonal interplay during adventitious root formation in flooded tomato plants. The Plant Journal, 63, 551–562.10.1111/j.1365-313X.2010.04262.x
  • Wample, R. L., & Reid, D. M. (1979). The role of endogenous auxin and ethylene in the formation of adventitious roots and hypocotyl hypertrophy in flooded sunflower plants (Helianthus annuus). Physiologia Plantarum, 45, 219–226.10.1111/ppl.1979.45.issue-2
  • Zhao, Y., & Hasenstein, K. H. (2010). Physiological interactions of antiauxins with auxin in roots. Journal of Plant Physiology, 167, 879–884.10.1016/j.jplph.2010.01.012