3,348
Views
12
CrossRef citations to date
0
Altmetric
Crop Physiology

Effects of elevated CO2 concentration on growth and photosynthesis of Chinese yam under different temperature regimes

, , &
Pages 227-236 | Received 28 Jun 2016, Accepted 07 Jan 2017, Published online: 06 Feb 2017

References

  • Aien, A., Pal, M., Khetarpal, S., & Kumar, P. S. (2014). Impact of elevated atmospheric CO2 concentration on the growth and yield in two potato cultivars. Journal of Agriculture Science and Technology, 16, 1661–1670.
  • Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258–270. doi:10.1111/j.1365-3040.2007.01641.x
  • Ainsworth, E. A., Rogers, A., Nelson, R., & Long, S. P. (2004). Testing the ‘source–sink’ hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology, 112, 85–94. doi:10.1016/j.agrformet.2003.09.002.
  • Baker, J. T., Allen, J. L. H., & Boote, K. J. (1992). Temperature effects on rice at elevated CO2 concentration. Journal of Experimental Botany, 43, 959–964. doi: 10.1093/jxb/43.7.959
  • Chen, T. C., & Setter, T. L. (2012). Response of potato dry matter assimilation and partitioning to elevated CO2 at various stages of tuber initiation and growth. Environmental and Experimental Botany, 80, 27–34. doi.10.1016/j.envexpbot.2012.02.003
  • Cheng, W., Sakai, H., Yagi, K., & Hasegawa, T. (2009). Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology, 149, 51–58. doi:10.1016/j.agrformet.2008.07.006
  • Conn, J. S., & Cochran, V. L. (2006). Responses of potato (Solanum tuberosum L.) to elevated atmospheric CO2 in north American Subartic. Agriculture, Ecosystems and Environment, 112, 49–57. doi:10.1016/j.agee.2005.07.010
  • Coursey, D. G., & Haynes, P. H. (1970). Root crops and their potential as food in the tropics. World Crops, 22, 261–265.
  • Craigon, J., Frangmeier, A., Jones, M., Donnelly, A., Bindi, M., De, T. L., … Ojanpera, K. (2002). Growth and marketable-yield responses of potato to increased CO2 and ozone. European Journal of Agronomy, 17, 273–289. doi:10.1016/S1161-0301(02)00066-7
  • Cruz, J. L., Alves, A. A. C., LeCain, D. R., Ellis, D. D., & Morgan, J. A. (2014). Effect of elevated CO2 concentration and nitrate: ammonium ratios on gas exchange and growth of cassava (Manihot esculenta Crantz). Plant and Soil, 374, 33–43.10.1007/s11104-013-1869-8
  • De Costa, W. A. J. M., Weerakoon, W. M. W., Herath, H. M. L. K., & Abeywardena, R. M. I. (2003). Response of growth and yield of rice (Oryza sativa) to elevated atmospheric carbon dioxide in the subhumid zone of Sri Lanka. Journal of Agronomy and Crop Science, 189, 83–95. doi:10.1046/j.1439-037X.2003.00013.x
  • Fernandez, M. D., Tezara, W., Rengifo, E., & Herrera, A. (2002). Lack of downregulation of photosynthesis in a tropical root crop, cassava, grown under an elevated CO2 concentration. Functional Plant Biology, 29, 805–814. doi:10.1071/PP01165
  • Gleadow, R. M., Evans, J. R., McCaffery, S., & Cavagnanro, T. R. (2009). Growth and nutritive value of cassava (Manihot esculenta Crantz) are reduced when grown in elevated CO2. Plant Biology, 1, 76–82. doi:10.1111/j.1438-8677.2009.00238.x
  • Holden, N. M., & Brereton, A. J. (2003). Potential impact of climate change on maize production and the introduction of soybean in Ireland. Irish Journal of Agricultural and Food Research, 42, 1–15.
  • Ike, P. C. (2012). Trend analysis of climate change factors and yield of yam in Bayelsa state, Nigeria. Journal of Agriculture and Food Sciences, 10, 18–26. Retrieved from http://dx.doi.org/10.4314/jafs.v10i1.3
  • Imai, K., Coleman, D. F., & Yanagisawa, T. (1984). Elevated atmospheric partial pressure of carbon dioxide and dry matter production of cassava (Manihot esculenta Crantz). Japanese Journal of Crop Science, 53, 479–485. Retrieved from http://doi.org/10.1626/jcs.53.479
  • Inter-governmental Panel on Climate Change. (2013). Fifth assessment report on climate change 2013. Working Group 1.. Geneva: IPCC secretariat.
  • Katny, C. A. M., Thoma, H. G., Schrier, A. A., Fangmeier, A., Jager, J. H., & Bel, E. J. A. (2005). Increase of photosynthesis and starch in potato under elevated CO2 is dependent on leaf age. Journal of Plant Physiology, 162, 429–438. doi:10.1016/j.jplph.2004.07.005
  • Kimball, B. A., Kobayashi, K., & Bindi, M. (2002). Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 77, 293–386. doi:10.1016/S0065-2113(02)77017-X
  • Kumagai, E., & Sameshima, R. (2014). Genotypic differences in soybean yield responses to increasing temperature in a cool climate are related to maturity group. Agricultural and Forest Meteorology, 198–199, 265–272. doi:10.1016/j.agrformet.2014.08.016
  • Marcos, J., Cornet, D., Bussiere, F., & Sierra, J. (2011). Water yam (Dioscorea alata L.) growth and yield as affected by the planting date: Experiment and modeling. European Journal of Agronomy, 34, 247–256. doi:10.1016/j.eja.2011.02.002
  • Miglietta, F., Magliulo, V., Bindi, M., Cerio, L., Vaccari, FP., Loduca, V., & Peressotti, A. (1998). Free Air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biology, 4, 163–172. doi:10.1046/j.1365-2486.1998.00120.x
  • Newman, Y. C., Sollenberger, L. E., Boote, K. J., Allen, Jr., L. H., Vu, J. C. V., & Hall, M. B. (2005). Temperature and carbon dioxide effect on nutritive value of rhizome peanut herbage. Crop Science, 45, 316–321. doi:10.2135/cropsci2005.0316
  • National Oceanic and Atmospheric Administration- Earth System Research Laboratory. (2014). Trends in atmospheric carbon dioxide. Retrieved from http://www.esrl.noaa.gov/gmd/ccgg/trends/
  • Nonhebel, S. (1993). The effect of changes in temperature and CO2 concentration on simulated spring wheat yields in The Netherlands. Climatic Change, 24, 311–329. doi:10.1007/BF01091853
  • Oseni, T. O., & Masarirambi, MT. (2011). Effect of climate change on maize (Zea mays) production and food security in Swaziland. American-Eurasian Journal of Agricultural and Environmental Sciences, 11, 385–391.
  • Prasad, P. V. V., Boote, K. J., & Allen, L. H. (2006). Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 139, 237–251. doi:10.1016/j.agrformet.2006.07.003
  • Raymundo, R., Asseng, S., Cammarano, D., & Quiroz, R. (2014). Potato, sweet potato, and yam models for climate change: A review. Field Crops Research, 166, 173–185. doi:10.1016/j.fcr.2014.06.017
  • Rosenthal, D. M., Slattery, R. A., Grennan, A. K., Cavagnaro, T. R., Fauquet, C. M., & Ort, D. R. (2012). Cassava about-FACE: Greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels. Global Change Biology, 18, 2661–2675. doi:10.1111/j.1365-2486.2012.02726.x
  • Roy, K. S., Bhattacharyya, P., Neogi, S., Rao, K. S., & Adhya, T. K. (2012). Combined effect of elevated CO2 and temperature on dry matter production, net assimilation rate, C and N allocations in tropical rice (Oryza sativa L.). Field Crops Research, 139, 71–79. doi:10.1016/j.fcr.2012.10.011
  • Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K., & Hasegawa, T. (2008). Rice yield enhancement by elevated CO2 is reduced in cool weather. Global Change Biology, 14, 276–284. doi:10.1111/j.1365-2486.2007.01498.x
  • Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K., & Hasegawa, T. (2009). Genotype variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, 60, 523–532. doi:10.1093/jxb/ern288
  • Shimono, H., Suzuki, K., Aoki, K., Hasegawa, T., & Okada, M. (2010). Effect of panicle removal on photosynthetic acclimation under elevated CO2 in rice. Photosynthetica, 48, 530–536.10.1007/s11099-010-0070-z
  • Srivastava, K. A., & Gaiser, T. (2010). Simulating biomass accumulation and yield of yam (Dioscorea alata) in the Upper Ouémé Basin (Benin Republic)- I. Compilation of physiological parameters and calibration at the field scale. Field Crops Research, 116, 23–29. doi:10.1016/j.fcr.2009.10.018
  • Srivastava, KA., Gaiser, T., Heiko, P., & Ewert, F. (2012). The impact of climate change on Yam (Dioscorea alata) yield in the savanna zone of West Africa. Agriculture, Ecosystems and Environment, 153, 57–64. doi:10.1016/j.agee.2012.03.004
  • Tacarindua, C. R. P., Shiraiwa, T., Homma, K., & Kumagai, E. (2013). The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crops Research, 154, 74–81. doi:10.1016/j.fcr.2013.07.021
  • United nation, Department of Economic and Social Affairs. (2015). World population prospects: The 2015 revision. Retrieved from https://esa.un.org/unpd/wpp/Publications/Files/WPP2015_Methodology.pdf
  • Usuda, H. (2004). Effect of elevated CO2 on the capacity of photosynthesis in two radish cultivars differing in capacity of storage roots. Plant Production Science, 7, 377–385. doi:10.1626/pps.7.377
  • Usuda, H., & Shimogawara, K. (1998). The effects of increased atmospheric carbon dioxide on growth, carbohydrates, and photosynthesis in radish, Raphanus sativus. Plant and Cell Physiology, 39, 1–7.10.1093/oxfordjournals.pcp.a029280
  • Valizadeh, J., Ziaei, S. M., & Mazloumzadeh, S. M. (2014). Assessing climate change impacts on wheat production (a case study). Journal of the Saudi Society of Agricultural Sciences, 13, 107–115. doi:10.1016/j.jssas.2013.02.002
  • Vu, J. C. V., Allen, L. H. J. R., Boote, K. J., & Bowes, G. (1997). Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant, Cell and Environment, 20, 68–76. doi:10.1046/j.1365-3040.1997.d01-10.x
  • Wall, G. W., Brooks, T. J., Adam, N. R., Cousins, A. B., Kimball, B. A., Pinter, Jr., P. J., … Webber, A. N. (2001). Elevated atmospheric CO2 improved Sorghum plant water status by ameliorating the adverse effects of drought. New Phytologist, 152, 231–248. doi:10.1046/j.0028-646X.2001.00260.x
  • Yang, L., Huang, J., Yang, H., Dong, G., Liu, G., Zhu, J., & Wang, Y. (2006). Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research, 98, 12–19. doi:10.1016/j.fcr.2005.11.003
  • Zakari, D. M., Mohammad, A. B., Medugu, N. I., & Sandra, I. (2014). Impact of climate change on yam production in Abuja, Nigeria. International Journal of Science, Environment and Technology, 3, 458–472.
  • Ziska, L. H., Namuco, O., Moya, T., & Quilang, J. (1997). Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal, 89, 45–53. doi:10.2134/agronj1997.000219620089000100