1,203
Views
6
CrossRef citations to date
0
Altmetric
Crop Physiology

Hydathode function and changes in contents of elements in eddo exposed to zinc in hydroponic solution

, , &
Pages 423-433 | Received 28 Jan 2017, Accepted 01 Sep 2017, Published online: 05 Oct 2017

References

  • Ali, G., Srivastava, P. S., & Iqbal, M. (2000). Influence of cadmium and zinc on growth and photosynthesis of Bacopa monniera L. cultivated in vitro. Biologia Plantarum, 43, 599–601. doi:10.1023/A:1002852016145
  • Ares, A., Huang, S. G., & Miyasaka, S. C. (1996). Taro response to different iron levels in hydroponic solution. Journal of Plant Nutrition, 19, 281–192. doi:10.1080/01904169609365122
  • Barak, P., & Helmke, P. A. (1993). The chemistry of zinc. In A. D. Robson (Ed.), Zinc in soils and plants, developments in plants and soil sciences (pp. 1–13). New York, NY: Kluwer Academic Press.
  • Bi, X., Feng, X., Yang, Y., Qiu, G., Li, G., Li, F., … Jin, Z. (2006). Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environment International, 32, 883–890. doi:10.1016/j.envint.2006.05.010
  • Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173, 677–702. doi:10.1111/j.1469-8137.2007.01996.x
  • Cantamessa, S., D’Agostino, G., & Berta, G. (2015). Hydathode structure and localization in Pteris vittata fronds and evidence for their involvement in arsenic leaching. Plant Biosystems, 150, 1208–1215. doi:10.1080/11263504.2015.1012135
  • Chaney, R. L. (1983). Plant uptake of inorganic waste constituents. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge, NJ: Noyes Data Corporation.
  • Chaney, R. L. (1993). Zinc phytotoxicity. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 135–150). Dordrecht: Kluwer Academic.10.1007/978-94-011-0878-2
  • Chilian, A., Bancuta, R. O., Bancuta, I., Setnescu, R., Ion, R.-M., Radulescu, C., … Chelarescu, E. D. (2015). Study of the influence of Zn concentration on the absorption and transport of Fe in maize by AAS and EDXRF analysis techniques. Romanian Reports in Physics, 67, 1138–1151.
  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475–486. doi:10.1007/s004250000458
  • Cobbett, C. S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 123, 825–832. doi:10.1104/pp.123.3.825
  • Feigl, G., Lehotai, N., Molnár, A., Ördög, A., Rodríguez-Ruiz, M., Palma, J. M., … Kolbert, Z. (2015). Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Annals of Botany, 116, 613–625. doi:10.1093/aob/mcu246
  • Forstner, U. (1995). Land contamination by metals: Global scope and magnitude of problem. In H. E. Allen, C. P. Huang, G. W. Bailey, & A. R. Bowers (Eds.), Metal speciation and contamination of soil (pp. 1–33). Boca Raton, FL: Lewis.
  • Fraústo da Silva, J. J. R., & Williams, R. J. P. (2001). The biological chemistry of the elements (2nd ed.). Oxford: Clarendon.
  • Frey, B., Keller, C., Zierold, K., & Schulin, R. (2000). Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 23, 675–687. doi:10.1046/j.1365-3040.2000.00590.x
  • Haydon, M. J., & Cobbett, C. S. (2007). A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in arabidopsis. Plant Physiology, 143, 1705–1719. doi:10.1104/pp.106.092015
  • Hossain, M. B., Matsuyama, N., & Kawasaki, M. (2016). Hydathode morphology and role of guttation in excreting sodium at different concentrations of sodium chloride in eddo. Plant Production Science, 19, 528–539. doi:10.1080/1343943X.2016.1210990
  • Islam, M. N., & Kawasaki, M. (2015). Evaluation of calcium regulating roles of guttation and calcium oxalate crystals in leaf blades and petioles of hydroponically grown eddo. Plant Production Science, 18, 11–21. doi:10.1626/pps.18.11
  • Jugsujinda, J., & Patrick, W. H. J. (1993). Evaluation of toxic conditions associated with oranging symptoms of rice in a flooded Oxisol in Sumatra, Indonesia. Plant and Soil, 152, 237–243.10.1007/BF00029093
  • Kalyanaraman, S. B., & Sivagurunathan, P. (1993). Effect of cadmium, copper, and zinc on the growth of blackgram. Journal of Plant Nutrition, 16, 2029–2042. doi:10.1080/01904169309364672
  • Kawachi, M., Kobae, Y., Mori, H., Tomioka, R., Lee, Y., & Maeshima, M. (2009). A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant and Cell Physiology, 50, 1156–1170. doi:10.1093/pcp/pcp067
  • Kawasaki, M., Takatsuji, A., Taniguchi, M., & Miyake, H. (2008). Localization of Casparian bands and crystal cells in relation to aluminum distribution in the primary root of eddo under aluminum treatment. Plant Production Science, 11, 238–242. doi:10.1626/pps.11.238
  • Khudsar, T., Mahmooduzzafar, M., Iqbal, R., & Sairam, K. (2004). Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biologia Plantarum, 48, 255–260.10.1023/B:BIOP.0000033453.24705.f5
  • Kim, Y.-Y., Choi, H., Segami, S., Cho, H.-T., Martinoia, E., Maeshima, M., & Lee, Y. (2009). AtHMA1 contributes to detoxification of excess Zn (II) in Arabidopsis. The Plant Journal, 58, 737–53. doi:10.1111/j.1365-313X.2009.03818.x
  • Kochian, L. V. (1993). Zinc absorption from hydroponic solution by plant roots. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 45–57). Dordrecht: Kluwer Academic.10.1007/978-94-011-0878-2
  • Küpper, H., Lombi, E., Zhao, F. J., & McGrath, S. P. (2000). Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212, 75–84. doi:10.1007/s004250000366
  • Küpper, H., Zhao, F. J., & McGrath, S. P. (1999). Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 119, 305–31. doi:10.1104/pp.119.1.305
  • Lin, C.-W., Chang, H.-B., & Huang, H.-J. (2005). Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiology and Biochemistry, 43, 963–968. doi:10.1016/j.plaphy.2005.10.001
  • Liu, H., Probst, A., & Liao, B. (2005). Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 339, 153–166. doi:10.1016/j.scitotenv.2004.07.030
  • Maeshima, M. (2001). Tonoplast transporters: Organization and function. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 469–497. doi:10.1146/annurev.arplant.52.1.469
  • Martinoia, E., Maeshima, M., & Neuhaus, E. (2007). Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany, 58, 83–102. doi:10.1093/jxb/erl183
  • Mirshekali, H., Hadi, H., Amirnia, R., & Khodaverdi, H. (2012). Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of sorghum (Sorghum bicolor) and common lambsquarter (Chenopodium album). International Journal of Agriculture: Research and Review, 2, 247–254.
  • Miyasaka, S. C., Hamasaki, R. T., & de la Pena, R. S. (2002). Nutrient deficiencies and excesses in taro. Honolulu: College of Tropical Agriculture and Human Resources, University of Hawai’i.
  • Mizuno, N., Nosaka, S., Mizuno, T., Horie, K., & Obata, H. (2003). Distribution of Ni and Zn in the leaves of Thlaspi japonicum growing on ultramafic soil. Soil Science and Plant Nutrition, 49, 93–97. doi:10.1080/00380768.2003.10409984
  • Mizuno, N., Takahashi, A., Wagatsuma, T., Mizuno, T., & Obata, H. (2002). Chemical composition of guttation fluid and leaves Petasites japonicus v. giganteus and Polygonum cuspidatum ultramafic soil. Soil Science and Plant Nutrition, 48, 451–453. doi:10.1080/00380768.2002.10409225
  • Nagai, M., Ohnishi, M., Uehara, T., Yamagami, M., Miura, E., Kamakura, M., … Kitamura, A. (2013). Ion gradients in xylem exudate and guttation fluid related to tissue ion levels along primary leaves of barley. Plant, Cell & Environment, 36, 1826–1837. doi:10.1111/pce.12090
  • O’Sullivan, J. N., Asher, C. J., & Blamey, F. P. C. (1996). Diagnostic criteria for nutrition disorders of root crops in the South Pacific. In E. T. Craswell, C. J. Asher, & J. N. Q’Sullivan (Eds.), Mineral nutrient disorders of root crops in the Pacific (pp. 83–90). Nuku’alofa: ACIAR.
  • Pan, X., Chen, G., Shi, C., Chai, M., Liu, J., Cheng, S., & Shi, F. (2016). Effects of Zn stress on growth, Zn accumulation, translocation, and subcellular distribution of spartina alterniflora Loisel. Clean – Soil, Air, Water, 44, 579–585. doi:10.1002/clen.201400288
  • Prasad, K. V. S. K., Saradhi, P. P., & Sharmila, P. (1999). Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environmental and Experimental Botany, 42, 1–10. doi:10.1016/S0098-8472(99)00013-1
  • Sagardoy, R., Morales, F., López-Millán, A.-F., Abadía, A., & Abadía, J. (2009). Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biology, 11, 339–350. doi:10.1111/j.1438-8677.2008.00153.x
  • Sagardoy, R., Vázquez, S., Florez-Sarasa, I. D., Albacete, A., Ribas-Carbó, M., Flexas, J., … Morales, F. (2010). Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytologist, 187, 145–158. doi:10.1111/j.1469-8137.2010.03241.x
  • Samreena, T., Humairaa, S., Ullahb, H. U., & Javid, M. (2017). Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mung beans plant (Vigna radiata). Arabian Journal of Chemistry, 10, S1802–S1807. doi:10.1016/j.arabjc.2013.07.005
  • Shanmugam, V., Lo, J.-C., Wu, C.-L., Wang, S.-L., Lai, C.-C., Connolly, E. L., … Yeh, K.-C. (2011). Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana – the role in zinc tolerance. New Phytologist, 190, 125–137. doi:10.1111/j.1469-8137.2010.03606.x
  • Shapira, O., Israeli, Y., Shani, U., & Schwartz, A. (2013). Salt stress aggravates boron toxicity symptoms in banana leaves by impairing guttation. Plant, Cell & Environment, 36, 275–287. doi:10.1111/j.1365-3040.2012.02572.x
  • Sharma, A., Patni, B., Shankhdhar, D., & Shankhdhar, S. C. (2013). Zinc – An indispensable micronutrient. Physiology and Molecular Biology of Plants, 19, 11–20. doi:10.1007/s12298-012-0139-1
  • Stein, R. J., Lopes, S. I. G., & Fett, J. P. (2014). Iron toxicity in field-cultivated rice: Contrasting tolerance mechanisms in distinct cultivars. Theoretical and Experimental Plant Physiology, 26, 135–146. doi:10.1007/s40626-014-0013-3
  • Stoyanova, Z., & Doncheva, S. (2002). The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. Brazilian Journal of Plant Physiology, 14, 111–116. doi:10.1590/S1677-04202002000200005
  • Subba, P., Mukhopadhyay, M., Mahato, S. K., Bhutia, K. D., Mondal, T. K., & Ghosh, S. K. (2014). Zinc stress induces physiological, ultrastructural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiology and Molecular Biology of Plants, 20, 461–473. doi:10.1007/s12298-014-0254-2
  • Wheeler, D. M., & Power, I. L. (1995). Comparison of plant uptake and plant toxicity of various ions in wheat. Plant and Soil, 172, 167–173. doi:10.1007/BF00011318
  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network Ecology, 2011, 1–20. doi:10.5402/2011/402647
  • Zhao, F. J., Lombi, E., Breedon, T., & McGrath, S. P. (2000). Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell & Environment, 23, 507–514. doi:10.1046/j.1365-3040.2000.00569.x
  • Zhao, F. J., Lombi, E., & McGraht, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37–43. doi:10.1023/A:1022530217289