1,918
Views
8
CrossRef citations to date
0
Altmetric
Crop Physiology

Root plasticity under fluctuating soil moisture stress exhibited by backcross inbred line of a rice variety, Nipponbare carrying introgressed segments from KDML105 and detection of the associated QTLs

, , , , , , , , , , & show all
Pages 106-122 | Received 25 Jan 2018, Accepted 20 Feb 2018, Published online: 09 Mar 2018

References

  • Allahyar, F. (2011). Interaction effects of nitrogen and irrigation methods on the growth and yield of rice in Amol area. International Journal of Agriculture and Crop Sceinces, 3(4), 111–113.
  • Azhiri-Sigari, T., Yamauchi, A., Kamoshita, A., & Wade, L. J. (2000). Genotypic variation in response of rainfed lowland rice to drought and rewatering. II. Root growth. Plant Production Science, 3, 180–188.10.1626/pps.3.180
  • Bañoc, D. M., Yamauchi, A., Kamoshita, A., Wade, L. J., & Pardales Jr., J. R. (2000a). Dry matter production and root system development of rice cultivars under fluctuating soil moisture. Plant Production Science, 3, 197–207.
  • Bañoc, D. M., Yamauchi, A., Kamoshita, A., Wade, L. J., & Pardales Jr., J. R. (2000b). Genotypic variations in response of lateral root development to fluctuating soil moisture in rice. Plant Production Science, 3, 335–343.
  • Belder, P., Spiertz, J. H. J., Bouman, B. A. M., Lu, G., & Tuong, T. P. (2005). Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research, 93(2–3), 169–185.10.1016/j.fcr.2004.09.022
  • Bengough, A. G., McKenzie, B. M., Hallett, P. D., & Valentine, T. A. (2011). Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62, 59–68.
  • Bernier, J., Kumar, A., Ramaiah, V., Spaner, D., & Atlin, G. (2007). A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Science, 47(2), 507–518.10.2135/cropsci2006.07.0495
  • Boling, A., Toung, T. P., Jatmiko, S. Y., & Burac, M. A. (2004). Yield constraints of rainfed lowland rice in Central Java, Indonesia. Field Crops Research, 90, 351–360.10.1016/j.fcr.2004.04.005
  • Bouman, B. A. M., Humphreys, E., Tuong, T. P., & Barker, R. (2007). Rice and water. Advances in Agronomy, 92, 187–237.10.1016/S0065-2113(04)92004-4
  • Bouman, B. A. M., Peng, S., Castañeda, A. R., & Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74(2), 87–105.10.1016/j.agwat.2004.11.007
  • Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635.10.1093/bioinformatics/btm308
  • Broman, K. W., Wu, H., Sen, S., & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19, 889–890.10.1093/bioinformatics/btg112
  • Cairns, J. E., Impa, S. M., O’Toole, J. C., Jagadish, S. V. K., & Price, A. H. (2011). Influence of the soil physical environment on rice (Oryza sativa L.) response to drought stress and its implications for drought research. Field Crops Research, 121(3), 303–310.10.1016/j.fcr.2011.01.012
  • Carrijo, D. R., Lundy, M. E., & Linquist, B. A. (2017). Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 203, 173–180.10.1016/j.fcr.2016.12.002
  • Castillo, E. G., Tuong, T. P., Singh, U., Inubushi, K., & Padilla, J. (2006). Drought response of dry-seeded rice to water stress timing and N-fertilizer rates and sources. Soil Science and Plant Nutrition, 52, 496–508.10.1111/j.1747-0765.2006.00064.x
  • Clark, L. J., Ferraris, S., Price, A. H., & Whalley, W. R. (2008). A gradual rather than abrupt increase in soil strength gives better root penetration of strong layers. Plant and Soil, 307, 235–242.10.1007/s11104-008-9602-8
  • Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169–196.10.1007/s10681-005-1681-5
  • Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19–21.10.1007/BF02712670
  • Ding, X., Li, X., & Xiong, L. (2011). Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice. Theoretical and Applied Genetics, 123(5), 815–826.10.1007/s00122-011-1629-1
  • Fukai, S., & Cooper, M. (1995). Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research, 40, 67–86.10.1016/0378-4290(94)00096-U
  • Furuta, T., Ashikari, M., Jena, K. K., Doi, K., & Reuscher, S. (2017). Adapting genotyping-by-sequencing for rice F2 populations. G3: Genes Genomes Genetics, 7(3), 881–893.10.1534/g3.116.038190
  • Gomez, M. S., Kumar, S. S., Jeyaprakash, P., Suresh, R., Biji, K. R., Boopathi, N. M., … Babu, R. C. (2006). Mapping QTLs linked to physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.) in the target environment. American Journal of Biochemistry and Biotechnology, 2(4), 161–169.
  • Gomez, S. M., Boopathi, N. M., Kumar, S. S., Ramasubramanian, T., Chengsong, Z., Jeyaprakash, P., … Babu, R. C. (2010). Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. Acta Physiologiae Plantarum, 32(2), 355–364. 10.1007/s11738-009-0413-1
  • Henry, A. (2013). IRRI’s drought stress research in rice with emphasis on roots: Accomplishments over the last 50 years. Plant Root, 7, 5–19.
  • Henry, A., Gowda, V. R. P., Torres, R. O., McNally, K. L., & Serraj, R. (2011). Variation in root system architecture and drought response in rice (Oryza sativa): Phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crops Research, 120(2), 205–214.10.1016/j.fcr.2010.10.003
  • IRRI (2009). CROPSTAT version 7.2. Metro Manila: International Rice Research Institute. Retrieved from http://archive.irri.org/science/software/cropstat.asp
  • Kameoka, E., Suralta, R. R., Mitsuya, S., & Yamauchi, A. (2015). Matching the expression of root plasticity with soil moisture availability maximizes production of rice plants grown in an experimental sloping bed having soil moisture gradients. Plant Production Science, 18, 267–276.10.1626/pps.18.267
  • Kamoshita, A., Wade, L. J., Ali, M. L., Pathan, M. S., Zhang, J., Sarkarung, S., & Nguyen, H. T. (2002). Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theoretical and Applied Genetics, 104(5), 880–893.
  • Kamoshita, A., Wade, L. J., & Yamauchi, A. (2000). Genotypic variation in response of rainfed lowland rice to drought and rewatering. III. Water extraction during the drought period. Plant Production Science, 3, 189–196.10.1626/pps.3.189
  • Kang, S. Y., Morita, S., & Yamazaki, K. (1994). Root growth and distribution in some japonica-indica hybrid and japonica type rice cultivars under field conditions. Japanese journal of crop science, 63(1), 118–124.10.1626/jcs.63.118
  • Kano, M., Inukai, Y., Kitano, H., & Yamauchi, A. (2011). Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant and Soil, 342, 117–128.10.1007/s11104-010-0675-9
  • Kano-Nakata, M., Gowda, V. R. P., Henry, A., Serraj, R., Inukai, Y., Fujita, D., … Yamauchi, A. (2013). Functional roles of the plasticity of root system development in biomass production and water uptake under rainfed lowland conditions. Field Crops Research, 144, 288–296.10.1016/j.fcr.2013.01.024
  • Kano-Nakata, M., Inukai, Y., Siopongco, J. D. L. C., Mitsuya, S., & Yamauchi, A. (2017). Quantitative evaluation of plastic root responses to contiguous water gradient in rice. Plant Root, 11, 70–78.10.3117/plantroot.11.70
  • Kano-Nakata, M., Inukai, Y., Wade, L. J., Siopongco, J. D., & Yamauchi, A. (2011). Root development, water uptake, and shoot dry matter production under water deficit conditions in two CSSLs of rice: Functional roles of root plasticity. Plant Production Science, 14, 307–317.10.1626/pps.14.307
  • Kano-Nakata, M., Suralta, R. R., Niones, J. M., & Yamauchi, A. (2012). Root sampling by using a root box–pinboard method. In H. E. Shashidhar, A. Henry, & B. Hardy (Eds.), Methodologies for root drought studies in rice (pp. 3–8). Los Baños: International Rice Research Institute.
  • Kato, Y., Henry, A., Fujita, D., Katsura, K., Kobayashi, N., & Serraj, R. (2011). Physiological characterization of introgression lines derived from an indica rice cultivar, IR64, adapted to drought and water-saving irrigation. Field Crops Research, 123(2), 130–138.10.1016/j.fcr.2011.05.009
  • Kato, Y., Kamoshita, A., Yamagishi, J., Imoto, H., & Abe, J. (2007). Growth of rice ( Oryza Sativa L.) cultivars under upland conditions with different levels of water supply3. Root system development, soil moisture changeand plant water status. Plant Production Science, 10, 3–13.10.1626/pps.10.3
  • Kato, Y., Okami, M., & Katsura, K. (2009). Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crops Research, 113(3), 328–334.10.1016/j.fcr.2009.06.010
  • Kono, Y., Tomida, K., Tatsumi, J., Nanoyama, T., Yamauchi, A., & Kitano, J. (1987). Effects of soil moisture conditions on the development of root systems of soybean plants (Glycine max MERR.). Japanese Journal of Crop Science, 56, 597–607.10.1626/jcs.56.597
  • Li, J., Wang, D., Xie, Y., Zhang, H., Hu, G., Li, J., … Li, Z. (2011). Development of upland rice introgression lines and identification of QTLs for basal root thickness under different water regimes. Journal of Genetics and Genomics, 38(11), 547–556.10.1016/j.jgg.2011.08.005
  • Li, Z., Mu, P., Li, C., Zhang, H., Li, Z., Gao, Y., & Wang, X. (2005). QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theoretical and Applied Genetics, 110(7), 1244–1252.10.1007/s00122-005-1958-z
  • Liu, L., Mu, P., Li, X., Qu, Y., Wang, Y., & Li, Z. (2008). Localization of QTL for basal root thickness in japonica rice and effect of marker-assisted selection for a major QTL. Euphytica, 164(3), 729–737.10.1007/s10681-008-9695-4
  • Matsuo, N., Ozawa, K., & Mochizuki, T. (2010). Physiological and morphological traits related to water use by three rice (Oryza sativa L.) genotypes grown under aerobic rice systems. Plant and Soil, 335(1–2), 349–361.10.1007/s11104-010-0423-1
  • McCouch, S. R., Cho, Y. G., Yano, M., & Blinstrub, M. P. (1997). Report on QTL nomenclature. Rice Genetic Newsletter, 14, 11–13.
  • Menge, M. D., Kameoka, E., Kano-Nakata, M., Yamauchi, A., Asanuma, S., Asai, H., … Makihara, D. (2016). Drought-induced root plasticity of two upland NERICA varieties under conditions with contrasting soil depth characteristics. Plant Production Science, 19, 389–400.10.1080/1343943X.2016.1146908
  • Nguyen, D. T. N., Suralta, R. R., Kano-Nakata, M., Mitsuya, S., Owusu-Nketia, S., & Yamauchi, A. (2018). Genotypic variations in the plasticity of nodal root penetration through the hardpan during soil moisture fluctutaions among four rice varieties. Plant Production Science. doi:10.1080/1343943X.2018.1439757.
  • Niones, J. M., Inukai, Y., Suralta, R. R., & Yamauchi, A. (2015). QTL associated with lateral root plasticity in response to soil moisture fluctuation stress in rice. Plant and Soil, 391(1–2), 63–75.10.1007/s11104-015-2404-x
  • Niones, J. M., Suralta, R. R., Inukai, Y., & Yamauchi, A. (2012). Field evaluation on functional roles of root plastic responses on dry matter production and grain yield of rice under cycles of transient soil moisture stresses using chromosome segment substitution lines. Plant and Soil, 359, 107–120.10.1007/s11104-012-1178-7
  • Niones, J. M., Suralta, R. R., Inukai, Y., & Yamauchi, A. (2013). Roles of root aerenchyma development and its associated QTL in dry matter production under transient moisture stress in rice. Plant Production Science, 16, 205–216.10.1626/pps.16.205
  • O’Toole, J. C., & Bland, W. L. (1987). Genotypic variation in crop plant root systems. Advances in Agronomy, 41, 91–145.10.1016/S0065-2113(08)60803-2
  • Patel, D. P., Das, A., Munda, G. C., Ghosh, P. K., Bordoloi, J. S., & Kumar, M. (2010). Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem. Agricultural Water Management, 97(9), 1269–1276.10.1016/j.agwat.2010.02.018
  • Paterson, A. H., Saranga, Y., Menz, M., Jiang, C. X., & Wright, R. J. (2003). QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theoretical and Applied Genetics, 106, 384–396.10.1007/s00122-002-1025-y
  • Peng, S., Bouman, B., Visperas, R. M., Castañeda, A., Nie, L., & Park, H. K. (2006). Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight-season experiment. Field Crops Research, 96(2–3), 252–259.10.1016/j.fcr.2005.07.007
  • Phung, N. T. P., Mai, C. D., Hoang, G. T., Truong, H. T. M., Lavarenne, J., Gonin, M., … Courtois, B. (2016). Genome-wide association mapping for root traits in a panel of rice accessions from Vietnam. BMC Plant Biology, 16(1), 10.10.1186/s12870-016-0747-y
  • Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J. L. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE, 7(2), e32253.10.1371/journal.pone.0032253
  • Price, A. H., Steele, K. A., Moore, B. J., & Jones, R. G. W. (2002). Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. Field Crops Research, 76(1), 25–43.10.1016/S0378-4290(02)00010-2
  • Qu, Y., Mu, P., Zhang, H., Chen, C. Y., Gao, Y., Tian, Y., … Li, Z. (2008). Mapping QTLs of root morphological traits at different growth stages in rice. Genetica, 133(2), 187–200.10.1007/s10709-007-9199-5
  • Samson, B. K., Hasan, M., & Wade, L. J. (2002). Penetration of hardpans by rice lines in the rainfed lowlands. Field Crops Research, 76(2–3), 175–188.10.1016/S0378-4290(02)00038-2
  • Sandhu, N., Anitha Raman, K., Torres, R. O., Audebert, A., Dardou, A., Kumar, A., & Henry, A. (2016). Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiology, 171(4), 2562–2576.
  • Sarkarung, S., Somrith, B., & Chitrakorn, S. (2000). Aromatic rice of Thailand. In R. K. Singh, U. S. Singh, & G. S. Khush (Eds.), Aromatic rices (pp. 180–183). Enfield, NH: Science Publishers.
  • Serraj, R., McNally, K. L., Slamet-Loedin, I., Kohli, A., Haefele, S. M., Atlin, G., & Kumar, A. (2011). Drought resistance improvement in rice: An integrated genetic and resource management strategy. Plant Production Science, 14(1), 1–14.10.1626/pps.14.1
  • Siopongco, J. D. L. C., Sekiya, K., Yamauchi, A., Egdane, J., Ismail, A. M., & Wade, L. J. (2008). Stomatal responses in rainfed lowland rice to partial soil drying; Evidence for root signals. Plant Production Science, 11, 28–41.10.1626/pps.11.28
  • Siopongco, J. D. L. C., Yamauchi, A., Salekdeh, H., Bennett, J., & Wade, L. J. (2005). Root growth and water extraction responses of double haploid rice lines to drought and rewatering during the vegetative stage. Plant Production Science, 9, 141–151.
  • Siopongco, J. D. L. C., Yamauchi, A., Salekdeh, H., Bennett, J., & Wade, L. J. (2006). Growth and water use response of doubled-haploid rice linesto drought and rewatering during the vegetative stage. Plant Production Science, 9, 141–151.10.1626/pps.9.141
  • Sri-Aun, V. (2005). Tracing the origin of Khao’Hawm Mali. Bangkok: Group of Rice Economic Research, Rice Research Institute, Department of Agriculture, Ministry of Agriculture and Cooperative.
  • Suralta, R. R., Inukai, Y., & Yamauchi, A. (2008). Utilizing chromosome segment substitution lines (CSSLs) for evaluation of root responses to transient moisture stresses in rice. Plant Production Science, 11, 457–465.10.1626/pps.11.457
  • Suralta, R. R., Inukai, Y., & Yamauchi, A. (2010). Dry matter production in relation to root plastic development, oxygen transport, and water uptake of rice under transient soil moisture stresses. Plant and Soil, 332(1–2), 87–104.10.1007/s11104-009-0275-8
  • Suralta, R. R., Kano-Nakata, M., Niones, J. M., Inukai, Y., Kameoka, E., Tran, T. T., … Yamauchi, A. (2016). Root plasticity for maintenance of productivity under abiotic stressed soil environments in rice: Progress and prospects. Field Crops Research. doi:10.1016/j.fcr.2016.06.023
  • Suralta, R. R., Lucob, N. B., Perez, L. M., Niones, J. M., & Nguyen, H. T. (2015). Developmental and quantitative trait loci analyses of root plasticity in response to soil moisture fluctuation in rice. Philippine Journal of Crop Science, 40(2), 12–24.
  • Suralta, R. R., Niones, J. M., Kano-Nakata, M., Tran, T. T., Mitsuya, S., & Yamauchi, A. (in press). Plasticity in nodal root elongation through the hardpan was trigerred by rewatering during soil moisture fluctuation stress in rice. Scientific Reports.
  • Suralta, R. R., & Yamauchi, A. (2008). Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environmental and Experimental Botany, 64(1), 75–82.10.1016/j.envexpbot.2008.01.004
  • Tao, H., Brueck, H., Dittert, K., Kreye, C., Lin, S., & Sattelmacher, B. (2006). Growth and yield formation of rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research, 95(1), 1–12.10.1016/j.fcr.2005.01.019
  • Tran, T. T., Kano-Nakata, M., Suralta, R. R., Menge, D., Mitsuya, S., Inukai, Y., & Yamauchi, A. (2015). Root plasticity and its functional roles were triggered by water deficit but not by the resulting changes in the forms of soil N in rice. Plant and Soil, 386(1–2), 65–76.10.1007/s11104-014-2240-4
  • Tran, T. T., Kano-Nakata, M., Takeda, M., Menge, D., Mitsuya, S., Inukai, Y., & Yamauchi, A. (2014). Nitrogen application enhanced the expression of developmental plasticity of root systems triggered by mild drought stress in rice. Plant and Soil, 378(1–2), 139–152.10.1007/s11104-013-2013-5
  • Tuong, T. P., & Bouman, B. A. M. (2003). Rice production in water-scarce environments. Water Productivity in Agriculture: Limits and opportunities for improvement, 1, 13–42.
  • Wade, L. J., Fukai, S., Samson, B. K., Ali, A., & Mazid, M. A. (1999). Rainfed lowland rice: Physical environment and cultivar requirements. Field Crops Research, 64(1–2), 3–12.10.1016/S0378-4290(99)00047-7
  • Wade, L. J., Bartolome, V., Mauleon, R., Vasant, V. D., Prabakar, S. M., Chelliah, M., … Henry, A. (2015). Environmental response and genomic regions correlated with rice root growth and yield under drought in the oryzaSNP panel across multiple study systems. PLoS ONE, 10(4), e0124127. doi:10.1371/journal.pone.0124127
  • Wang, H., Siopongco, J., Wade, L. J., & Yamauchi, A. (2009). Fractal analysis on root systems of rice plants in response to drought stress. Environmental and Experimental Botany, 65(2–3), 338–344.10.1016/j.envexpbot.2008.10.002
  • Wang, H., & Yamauchi, A. (2006). Growth and function of roots under abiotic stress soils. In B. Huang (Ed.), Plant-environment Interactions (3rd ed. pp. 271–319). New York, NY: CRC Press, Taylor and Francis Group LLC.10.1201/9781420019346
  • Xu, C. G., Li, X. Q., Xue, Y., Huang, Y. W., Gao, J., & Xing, Y. Z. (2004). Comparison of quantitative trait loci controlling seedling characteristics at two seedling stages using rice recombinant inbred lines. Theoretical and Applied Genetics, 109(3), 640–647.
  • Yadav, S., Humphreys, E., Kukal, S. S., Gill, G., & Rangarajan, R. (2011). Effect of water management on dry seeded and puddled transplanted rice. Field Crops Research, 120(1), 123–132. 10.1016/j.fcr.2010.09.003
  • Yamauchi, A., Kono, Y., & Tatsumi, J. (1987). Quantitative analysis on root system structures of upland rice and maize. Japanese Journal of Crop Science, 56, 608–617.10.1626/jcs.56.608
  • Yamauchi, A., Pardales, Jr., J. R., & Kono, Y. (1996). Root system structure and its relation to stress tolerance. In O. Ito, K. Katayama, C. Johansen, J. V. D. K. Kumar Rao, J. J. Adu-Gyamfi, & T. J. Rego (Eds.), Roots and nitrogen in cropping systems of the semi-arid tropics (pp. 211–234). Tsukuba: Japan International Research Center for Agriculture Sciences.
  • Zhao, L., Wu, L., Li, Y., Animesh, S., Zhu, D., & Uphoff, N. (2010). Comparisons of yield, water use efficiency, and soil microbial biomass as affected by the system of rice intensification. Communications in Soil Science and Plant Analysis, 41(1), 1–12.10.1080/00103620903360247
  • Zhao, L., Wu, L., Li, Y., Lu, X., Zhu, D., & Uphoff, N. (2009). Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different N application rates. Experimental Agriculture, 45(03), 275–286.10.1017/S0014479709007583
  • Zhao, L., Wu, L., Wu, M., & Li, Y. (2011). Nutrient uptake and water use efficiency as affected by modified rice cultivation methods with reduced irrigation. Paddy and Water Environment, 9(1), 25–32.10.1007/s10333-011-0257-3
  • Zheng, B. S., Yang, L., Zhang, W. P., Mao, C. Z., Wu, Y. R., Yi, K. K., … Wu, P. (2003). Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. TAG Theoretical and Applied Genetics, 107, 1505–1515.10.1007/s00122-003-1390-1