1,664
Views
10
CrossRef citations to date
0
Altmetric
Crop Physiology

NaCl-stimulated ATP synthesis in mitochondria of a halophyte Mesembryanthemum crystallinum L.

, , , &
Pages 129-135 | Received 07 Jun 2019, Accepted 10 Oct 2019, Published online: 23 Oct 2019

References

  • Adams, P., Nelson, D. E., Yamada, S., Chmara, W., Jensen, R. G., Bohnert, H. J., & Griffiths, H. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). The New Phytologist, 138(2), 171–190.
  • Adams, P., Thomas, J. C., Vernon, D. M., Bohnert, H. J., & Jensen, R. G. (1992). Distinct cellular and organismic responses to salt stress. Plant and Cell Physiology, 33(8), 1215–1223.
  • Agarie, S., Kawaguchi, A., Kodera, A., Sunagawa, H., Kojima, H., Nose, A., & Nakahara, T. (2009). Potential of the common ice plant, Mesembryanthemum crystallinum as a new high-functional food as evaluated by polyol accumulation. Plant Production Science, 12(1), 37–46.
  • Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., … Cushman, J. C. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. Journal of Experimental Botany, 58(8), 1957–1967.
  • Atreya, A., & Bhargava, S. (2008). Salt-induced respiration in Bruguiera cylindrica—Role in salt transport and protection against oxidative damage. Physiology and Molecular Biology of Plants, 14(3), 217–226.
  • Barkla, B. J., Zingarelli, L., Blumwald, E., & Smith, J. A. C. (1995). Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiology, 109(2), 549–556.
  • Bohnert, H. J., & Cushman, J. C. (2000). The ice plant cometh: Lessons in abiotic stress tolerance. Journal of Plant Growth Regulation, 19(3), 334–346.
  • Bohnert, H. J., Ostrem, J. A., Cushman, J. C., Michalowski, C. B., Rickers, J., Meyer, G., … Schmitt, J. M. (1988). Mesembryanthemum crystallinum, a higher plant model for the study of environmentally induced changes in gene expression. Plant Molecular Biology Reporter, 6(1), 10–28.
  • Flowers, T., & Hanson, J. (1969). The effect of reduced water potential on soybean mitochondria. Plant Physiology, 44(7), 939–945.
  • Flowers, T., Troke, P., & Yeo, A. (1977). The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 28(1), 89–121.
  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945–963.
  • Flowers, T. J., Munns, R., & Colmer, T. D. (2014). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 115(3), 419–431.
  • Gemperli, A. C., Dimroth, P., & Steuber, J. (2003). Sodium ion cycling mediates energy coupling between complex I and ATP synthase. Proceedings of the National Academy of Sciences, 100(3), 839–844.
  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227–255.
  • Himabindu, Y., Chakradhar, T., Reddy, M. C., Kanygin, A., Redding, K. E., & Chandrasekhar, T. (2016). Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany, 124, 39–63.
  • Hong, H. T. K., Phuong, T. T. B., Thuy, N. T. T., Wheatley, M. D., & Cushman, J. C. (2019). Simultaneous chloroplast, mitochondria isolation and mitochondrial protein preparation for two-dimensional electrophoresis analysis of Ice plant leaves under well watered and water-deficit stressed treatments. Protein Expression and Purification, 155, 86–94.
  • Jacoby, R., Che‐Othman, M., Millar, A., & Taylor, N. (2016). Analysis of the sodium chloride‐dependent respiratory kinetics of wheat mitochondria reveals differential effects on phosphorylating and non‐phosphorylating electron transport pathways. Plant, Cell & Environment, 39(4), 823–833.
  • Jacoby, R. P., Taylor, N. L., & Millar, A. H. (2011). The role of mitochondrial respiration in salinity tolerance. Trends in Plant Science, 16(11), 614–623.
  • Kaburagi, E., Morikawa, Y., Yamada, M., & Fujiyama, H. (2014). Sodium enhances nitrate uptake in Swiss chard (Beta vulgaris var. cicla L.). Soil Science and Plant Nutrition, 60(5), 651–658.
  • Keech, O., Dizengremel, P., & Gardeström, P. (2005). Preparation of leaf mitochondria from Arabidopsis thaliana. Physiologia Plantarum, 124(4), 403–409.
  • Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6, 537.
  • Lorimer, G. H., & Miller, R. J. (1969). The osmotic behavior of corn mitochondria. Plant Physiology, 44(6), 839–844.
  • Mulkidjanian, A. Y., Dibrov, P., & Galperin, M. Y. (2008). The past and present of sodium energetics: May the sodium-motive force be with you. Biochimica Et Biophysica Acta (bba)-bioenergetics, 1777(7–8), 985–992.
  • Niewiadomska, E., Karpinska, B., Romanowska, E., Slesak, I., & Karpinski, S. (2004). A salinity-induced C3-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant and Cell Physiology, 45(6), 789–794.
  • Oh, D. H., Barkla, B. J., Vera‐Estrella, R., Pantoja, O., Lee, S. Y., Bohnert, H. J., & Dassanayake, M. (2015). Cell type‐specific responses to salinity—The epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. New Phytologist, 207(3), 627–644.
  • Panda, S. K., Yamamoto, Y., Kondo, H., & Matsumoto, H. (2008). Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. Comptes Rendus Biologies, 331(8), 597–610.
  • Panta, S., Flowers, T., Lane, P., Doyle, R., Haros, G., & Shabala, S. (2014). Halophyte agriculture: Success stories. Environmental and Experimental Botany, 107, 71–83.
  • Shabala, S. (2013). Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112(7), 1209–1221.
  • Shabala, S., & Mackay, A. (2011). Ion transport in halophytes. In Cánovas, F. M. (Ed.), Advances in botanical research (Vol. 57, pp. 151–199). Netherlands: Elsevier. doi:10.1016/B9780-12-387692-8.00005-9
  • Soccio, M., Laus, M. N., Trono, D., & Pastore, D. (2013). A new simple fluorimetric method to assay cytosolic ATP content: Application to durum wheat seedlings to assess modulation of mitochondrial potassium channel and uncoupling protein activity under hyperosmotic stress. Biologia, 68(3), 421–432.
  • Tran, D. Q., Konishi, A., Cushman, J. C., Morokuma, M., Toyota, M., & Agarie, S. (2019). Ion accumulation and expression of ion homeostasis-related genes associated with halophilism, NaCl-promoted growth in a halophyte Mesembryanthemum crystallinum L. Plant Production Science, 1–12. doi:10.1080/1343943X.2019.1647788
  • Vera-Estrella, R., Barkla, B. J., Bohnert, H. J., & Pantoja, O. (1999). Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta, 207(3), 426–435.
  • Wang, L., Liu, X., Liang, M., Tan, F., Liang, W., Chen, Y., … Chen, W. (2014). Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PloS One, 9(1), e83141.
  • Wang, X., Chang, L., Wang, B., Wang, D., Li, P., Wang, L., … Guo, A. (2013). Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Molecular & Cellular Proteomics, 12(8), 2174–2195.
  • Winter, K., & von Willert, D. J. (1972). NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum. Zeitschrift Für Pflanzenphysiologie, 67(2), 166–170.
  • Yamada, M., Kuroda, C., & Fujiyama, H. (2016). Function of sodium and potassium in growth of sodium-loving Amaranthaceae species. Soil Science and Plant Nutrition, 62(1), 20–26.
  • Yeo, A. (1983). Salinity resistance: Physiologies and prices. Physiologia Plantarum, 58(2), 214–222.
  • Yu, J., Chen, S., Zhao, Q., Wang, T., Yang, C., Diaz, C., … Dai, S. (2011). Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Journal of Proteome Research, 10(9), 3852–3870.