1,424
Views
0
CrossRef citations to date
0
Altmetric
Crop Physiology

Exogenous calcium fertilizer supplementation regulates production period in djulis (Chenopodium formosanum Koidz.)

, ORCID Icon, & ORCID Icon
Pages 421-433 | Received 02 Jan 2022, Accepted 27 Sep 2022, Published online: 11 Oct 2022

References

  • Ahmed, A. A. M., Zuhair, A. D., & Wisam, K. K. (2020). Role of Boron and Calcium on growth, flowering and yield of strawberry (Fragaria x ananassa Duch) var. Liberation D’Orleans. Middle East Journal of Agriculture Research, 9, 130–133. https://doi.org/10.36632/mejar/2020.9.1.13
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Chao, -Y.-Y., Wang, W.-J., & Liu, Y.-T. (2021). Effect of calcium on the growth of djulis (Chenopodium formosanum Koidz.) Sprouts. Agronomy, 11(1), 82. https://doi.org/10.3390/agronomy11010082
  • Cheng, T.-S., Hung, M.-J., Cheng, Y.-I., & Cheng, L.-J. (2013). Calcium-induced proline accumulation contributes to amelioration of NaCl injury and expression of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Aquatic Toxicology, 144, 265–274. https://doi.org/10.1016/j.aquatox.2013.10.015
  • Chéour, F., & Souiden, Y. (2015). Calcium delays the postharvest ripening and related membrane-lipid changes of tomato. Journal of Nutrition & Food Sciences, 5(5), 1–6. https://doi.org/10.4172/2155-9600
  • Domingues, L. D. S., Ribeiro, N. D., Andriolo, J. L., Possobom, M. T. D. F., & Zemolin, A. E. M. (2016). Growth, grain yield and calcium, potassium and magnesium accumulation in common bean plants as related to calcium nutrition. Acta Scientiarum. Agronomy, 38(2), 207–217. https://doi.org/10.4025/actasciagron.v38i2.27757
  • Endres, L., da Cruz, S. J. S., Vilela, R. D., Dos Santos, J. M., de Souza Barbosa, G. V., & Silva, J. A. C. (2016). Foliar applications of calcium reduce and delay sugarcane flowering. BioEnergy Research, 9(98–108), 98–108. https://doi.org/10.1590/1984-70332015v15n3c32
  • Foster, J. G., & Hess, J. L. (1980). Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology, 66(3), 482–487. https://doi.org/10.1104/pp.66.3.482
  • Gaion, L. A., Júnior, J. C. M., Barreto, R. F., D’Amico-Damião, V., de Mello Prado, R., & Carvalho, R. F. (2019). Amplification of gibberellins response in tomato modulates calcium metabolism and blossom end rot occurrence. Scientia Horticulturae, 246(27), 498–505. https://doi.org/10.1016/j.scienta.2018.11.032
  • Gao, Q., Tan, Q., Song, Z., Chen, W., Li, X., & Zhu, X. (2020). Calcium chloride postharvest treatment delays the ripening and softening of papaya fruit. Journal of Food Processing and Preservation, 44(8), e14604. https://doi.org/10.1111/jfpp.14604
  • Hong, Y.-H., Huang, Y.-L., Liu, Y.-C., & Tsai, P.-J. (2016). Djulis (Chenopodium formosanum Koidz.) water extract and its bioactive components ameliorate dermal damage in UVB-irradiated skin models. BioMed Research International, 2, 736–879. https://doi.org/10.1155/2016/7368797
  • Jana, S., & Choudhuri, M. A. (1981). Glycolate metabolism of three submersed aquatic angiosperms: Effect of heavy metals. Aquatic Botany, 11, 67–77. https://doi.org/10.1016/0304-3770(81)
  • Kato, M., & Shimizu, S. (1987). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65(4), 729–735. https://doi.org/10.1139/b87-097
  • Kazemi, M. (2014). Effect of foliar application of humic acid and calcium chloride on tomato growth. Bulletin of Environment, Pharmacology and Life Sciences, 3(3), 41–46. https://doi.org/10.1007/s00344-014-9462-9
  • Kumara, K., Wathugala, D. L., Hafeel, R. F., & Kumarasinghe, H. (2019). Effect of nano calcite foliar fertilizer on the growth and yield of rice (Oryza sativa). Journal of Agricultural Sciences, 14(1), 154–164. https://doi.org/10.4038/tare.v20i1-2.5375
  • Liu, Y.-F., Zhang, G.-X., Qi, M.-F., & Li, T.-L. (2015). Effects of calcium on photosynthesis, antioxidant system, and chloroplast ultrastructure in tomato leaves under low night temperature stress. Journal of Plant Growth Regulation, 34(2), 263–273. https://doi.org/10.1007/s00344-014-9462-9
  • Lopez, M. V., & Satti, S. M. E. (1996). Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Science, 114(1), 19–27. https://doi.org/10.1016/0168-9452(95)
  • Madani, B., Muda Mohamed, M. T., Awang, Y., Kadir, J., & Patil, V. D. (2013). Effects of calcium treatment applied around the root zone on nutrient concentrations and morphological traits of papaya seedlings (‘Carica papaya’L. cv. Eksotika II). Australian Journal of Crop Science, 7(5), 568–572.
  • Martin-Diana, A. B., Rico, D., Frias, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: A review. Trends in Food Science & Technology, 18(4), 210–218. https://doi.org/10.1016/j.tifs.2006.11.027
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Olle, M., & Bender, I. (2009). Causes and control of calcium deficiency disorders in vegetables: A review. The Journal of Horticultural Science and Biotechnology, 84(6), 577–584. https://doi.org/10.1080/14620316.2009.11512568
  • Paoletti, F., Aldinucci, D., Mocali, A., & Caparrini, A. (1986). A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical Biochemistry, 154(2), 536–541. https://doi.org/10.1016/0003-2697(86)
  • Quiles, A., Hernando, I., Pérez-Munuera, I., Llorca, E., Larrea, V., & Ángeles Lluch, M. (2004). The effect of calcium and cellular permeabilization on the structure of the parenchyma of osmotic dehydrated ‘Granny Smith’apple. Journal of the Science of Food and Agriculture, 84(13), 1765–1770. https://doi.org/10.1002/jsfa.1884
  • Tan, W., Wei Meng, Q., Brestic, M., Olsovska, K., & Yang, X. (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168(17), 2063–2071. https://doi.org/10.1016/j.jplph.2011.06.009
  • Thor, K. (2019). Calcium—Nutrient and Messenger. Frontiers in Plant Science, 10, 440. https://doi.org/10.3389/fpls.2019.00440
  • Tsai, P.-J., Chen, Y.-S., Sheu, C.-H., & Chen, C.-Y. (2011). Effect of nanogrinding on the pigment and bioactivity of djulis (Chenopodium formosanum Koidz.). Journal of Agricultural and Food Chemistry, 59(5), 1814–1820. https://doi.org/10.1021/jf1041273
  • White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487–511. https://doi.org/10.1093/aob/mcg164
  • Xu, C., Li, X., Zhang, L., & Muldoon, M. (2013). The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions. PloS One, 8(7), e68214. https://doi.org/10.1371/journal.pone.0068214
  • Ye, T., Li, Y., Zhang, J., Hou, W., Zhou, W., Lu, J., Xing, Y., & Li, X. (2019). Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L.). Global Ecology and Conservation, 20, e00753. https://doi.org/10.1016/j.gecco.2019.e00753