1,335
Views
0
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Effect of foliar-applied Euphorbia hirta towards controlling bacterial diseases in tomato crops and enhancing fruit yield and shelf life

, &
Pages 1-16 | Received 05 Jun 2022, Accepted 01 Dec 2022, Published online: 15 Dec 2022

References

  • AAPFCO. (2012). Product label guide. Association of American Plant Food Control Officials. http://agr.mt.gov/agr/Programs/Pesticides/PDFs/AAPFCO_Labeling_Guide_2012.pdf
  • Abubakar, E. M. M. (2009). Antibacterial activity of crude extracts of Euphorbia hirta against some bacteria associated with enteric infections. Journal of Medicinal Plants Research, 3(7), 498–505. https://academicjournals.org/journal/JMPR/article-full-text-pdf/C84129214592
  • Adejo, G. O., Agbali, F. A., & Otokpa, O. S. (2015). Antioxidant, total lycopene, ascorbic acid and microbial load estimation in powdered tomato varieties sold in dutsin-ma market. Open Access Library Journal, 2(108), 1–7. https://www.scirp.org/html/68576_68576.htm
  • Agarwal, P., Patel, K., Das, A. K., Ghosh, A., & Agarwal, P. K. (2016). Insights into the role of seaweed Kappaphycus alvarezii sap towards phytohormone signalling and regulating defence responsive genes in Lycopersicon esculentum. Journal of Applied Phycology, 28(4), 2529–2537. https://link.springer.com/article/10.1007/s10811-015-0784-1
  • Ahanger, M. A., Mir, R. A., Alyemeni, M. N., & Ahmad, P. (2020). Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiology and Biochemistry, 147, 31–42. https://doi.org/10.1016/j.plaphy.2019.12.007
  • Ahmad, W., Singh, S., & Kumar, S. (2017). Phytochemical screening and antimicrobial study of Euphorbia hirta extracts. Journal of Medicinal Plants Studies, 5, 183–186. https://doi.org/10.4103/2229-516X.117082
  • Al-Snafi, A. E. (2017). Pharmacology and therapeutic potential of Euphorbia hirta (syn: Euphorbia pilulifera)-A review. IOSR Journal of Pharmacy (IOSRPHR), 7(3), 7–20. http://www.iosrphr.org/papers/v7i3V1/B0703010720.pdf
  • Amist, N., & Singh, N. B. (2022). Ethylene and phytohormone crosstalk in plant defense against abiotic stress. Ethylene in Plant Biology, 277–290. https://doi.org/10.1002/9781119744719.ch12
  • Angelika, G. P., & Suprihadi, A. (2014). Uji aktivitas antibakteri ekstrak tumbuhan Euphorbia hirta L. terhadap ralstonia solanacearum, Escherichia coli, dan staphylococcus aureus secara in vitro. Jurnal Akademika Biologi, 3(2), 49–58. https://ejournal3.undip.ac.id/index.php/biologi/article/view/19444
  • Atif, M., Ilavenil, S., Devanesan, S., AlSalhi, M. S., Choi, K. C., Vijayaraghavan, P., Alfuraydi, A. A., & Alanazi, N. F. (2020). Essential oils of two medicinal plants and protective properties of jack fruits against the spoilage bacteria and fungi. Industrial Crops and Products, 147, 112239. https://doi.org/10.1016/j.indcrop.2020.112239
  • Awad, D., & Brueck, T. (2020). Optimization of protein isolation by proteomic qualification from Cutaneotrichosporon oleaginosus. Analytical and Bioanalytical Chemistry, 412(2), 449–462. https://doi.org/10.1007/s00216-019-02254-7
  • Balestra, G. M., Heydari, A., Ceccarelli, D., Ovidi, E., & Quattrucci, A. (2009). Antibacterial effect of allium sativum and ficus carica extracts on tomato bacterial pathogens. Crop Protection, 28(10), 807–811. https://doi.org/10.1016/j.cropro.2009.06.004
  • Caldwell, D., Kim, B. S., & Iyer-Pascuzzi, A. S. (2017). Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology, 107(5), 528–536. https://doi.org/10.1094/PHYTO-09-16-0353-R
  • Chang, A., Lim, M. H., Lee, S. W., Robb, E., & Nazar, R. N. (2008). Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized. The Journal of Biological Chemistry, 283(48), 33591–33601. https://doi.org/10.1074/jbc.M804428200
  • Chen, S., Wang, X., Zhang, L., Lin, S., Liu, D., Wang, Q., Cai, S., El-Tanbouly, R., Gan, L., Wu, H., & Li, Y. (2016). Identification and characterization of tomato gibberellin 2-oxidases (Ga2oxs) and effects of fruit-specific SlGa2ox1 overexpression on fruit and seed growth and development. Horticulture research, 3(1), 3. https://doi.org/10.1038/hortres.2016.59
  • Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162(1), 156–159. https://doi.org/10.1016/0003-2697(87)90021-2
  • Colla, G., Cardarelli, M., Bonini, P., & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience, 52(9), 1214–1220. https://doi.org/10.21273/HORTSCI12200-17
  • Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia horticulturae, 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037
  • Cruz-Valderrama, J. E., Bernal-Gallardo, J. J., Herrera-Ubaldo, H., & de Folter, S. (2021). Building a flower: The influence of cell wall composition on flower development and reproduction. Genes, 12(7), 978. https://doi.org/10.3390/genes12070978
  • Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  • Henry, E., Toruño, T. Y., Jauneau, A., Deslandes, L., & Coaker, G. (2017). Direct and indirect visualization of bacterial effector delivery into diverse plant cell types during infection. The Plant Cell, 29(7), 1555–1570. https://doi.org/10.1105/tpc.17.00027
  • Horsfall, J. G. (1945). An improved grading system for measuring plant diseases. Phytopathology, 35, 655.
  • Im, S. M., Yu, N. H., Joen, H. W., Kim, S. O., Park, H. W., Park, A. R., & Kim, J. C. (2020). Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing bacillus methylotrophicus DR-08. Pesticide Biochemistry and Physiology, 163, 130–137. https://doi.org/10.1016/j.pestbp.2019.11.007
  • Jiroutova, P., Oklestkova, J., & Strnad, M. (2018). Crosstalk between brassinosteroids and ethylene during plant growth and under abiotic stress conditions. International Journal of Molecular Sciences, 19(10), 3283. https://doi.org/10.3390/ijms19103283
  • Johnson, M. P. (2016). An overview of photosynthesis. Essays in biochemistry, 60(3), 255–273. https://doi.org/10.1042/EBC20160016
  • Kabir, F., Gulfraz, M., Raja, G. K., Inam-Ul-Haq, M., Ahmad, M. S., Nasir, M. F., Awais, M., & Batool, I. (2018). Nutrients utilization and biomass production by microalgae culture development in wastewater. International Journal of Biosciences, 12, 460–469. http://dx.doi.org/10.12692/ijb/12.6.460-469
  • Kangasjärvi, S., Neukermans, J., Li, S., Aro, E. M., & Noctor, G. (2012). Photosynthesis, photorespiration, and light signalling in defence responses. Journal of Experimental Botany, 63(4), 1619–1636. https://doi.org/10.1093/jxb/err402
  • Kelman, A. (1954). The relationship of pathogenicity in pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology, 44(12), 693–695. https://www.cabdirect.org/cabdirect/abstract/19551101405
  • Klančnik, A., Piskernik, S., Jeršek, B., & Možina, S. S. (2010). Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of Microbiological Methods, 81(2), 121–126. https://doi.org/10.1016/j.mimet.2010.02.004
  • Koike, M., & Shimada, T. (1992). Alfalfa-verticilliumalbo-atrum interactions II. In vitro peroxidase and phenylalanine ammonia-lyase activities enhanced by treatment with fungal elicitors. Plant Tissue Culture Letters, 9(2), 81–85. https://doi.org/10.5511/plantbiotechnology1984.9.81
  • Kumar, S., Malhotra, R., & Kumar, D. (2010). Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacognosy Reviews, 4(7), 58. https://doi.org/10.4103/0973-7847.65327
  • Kumar, R., Soni, M., & Mondal, K. K. (2016). XopN-T3SS effector of Xanthomonas axonopodis pv. punicae localizes to the plasma membrane and modulates ROS accumulation events during blight pathogenesis in pomegranate. Microbiological research, 193, 111–120. https://doi.org/10.1016/j.micres.2016.10.001
  • Lin, S., Huang, L., Miao, Y., Yu, Y., Peng, R., & Cao, J. (2019). Constitutive overexpression of the classical arabinogalactan protein gene BcMF18 in arabidopsis causes defects in pollen intine morphogenesis. Plant Growth Regulation, 88(2), 159–171. https://doi.org/10.1007/s10725-019-00496-0
  • Mishra, A. K., Sharma, K., & Misra, R. S. (2012). Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interaction, 7(2), 95–120. https://doi.org/10.1080/17429145.2011.597517
  • Mitrev, S., & Kovačević, B. (2006). Characterization of Xanthomonas axonopodis pv. vesicatoria isolated from peppers in macedonia. Journal of Plant Pathology, 88(3), 321–324. https://www.jstor.org/stable/41998338
  • Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments, 30(1), ME14144. https://doi.org/10.1264/jsme2.ME14144
  • Niu, L., & Liao, W. (2016). Hydrogen peroxide signaling in plant development and abiotic responses: Crosstalk with nitric oxide and calcium. Frontiers in plant science, 7, 230. https://doi.org/10.3389/fpls.2016.00230
  • Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2018). Biostimulants research in some horticultural plant species—a review. Food and Energy Security, 8(2), e00162. https://doi.org/10.1002/fes3.162
  • Parekh, J., Jadeja, D., & Chanda, S. (2005). Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turkish Journal of Biology, 29(4), 203–210. https://journals.tubitak.gov.tr/biology/vol29/iss4/3/
  • Perumal, S., & Mahmud, R. (2013). Chemical analysis, inhibition of biofilm formation and biofilm eradication potential of Euphorbia hirta L. against clinical isolates and standard strains. BMC Complementary and Alternative Medicine, 13(1), 1–8. https://doi.org/10.1186/1472-6882-13-346
  • Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., Vallad, G. E., & Jones, J. B. (2015). Bacterial spot of tomato and pepper: Diverse X anthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16(9), 907–920. https://doi.org/10.1111/mpp.12244
  • Priller, J. P. R., Reid, S., Konein, P., Dietrich, P., Sonnewald, S., & Davis, K. R. (2016). The Xanthomonas campestris pv. vesicatoria type-3 effector XopB inhibits plant defence responses by interfering with ROS production. Plos One, 11(7), e0159107. https://doi.org/10.1371/journal.pone.0159107
  • Rajeh, M. A. B., Zuraini, Z., Sasidharan, S., Latha, L. Y., & Amutha, S. (2010). Assessment of Euphorbia hirta L. leaf, flower, stem and root extracts for their antibacterial and antifungal activity and brine shrimp lethality. Molecules, 15(9), 6008–6018. https://doi.org/10.3390/molecules15096008
  • Rajendran, D. K., Park, E., Nagendran, R., Hung, N. B., Cho, B. K., Kim, K. H., & Lee, Y. H. (2016). Visual analysis for detection and quantification of pseudomonas cichorii disease severity in tomato plants. The Plant Pathology Journal, 32(4), 300. https://doi.org/10.5423/2FPPJ.OA.01.2016.0032
  • Robinson, R. K. (2014). Chapter: Xanthomonas vesicatoria. Encyclopedia of food microbiology. Academic press.
  • Rouphael, Y., Cardarelli, M., Bonini, P., & Colla, G. (2017). Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Frontiers in plant science, 8, 131. https://doi.org/10.3389/fpls.2017.00131
  • Sánchez-Vicente, I., Fernández-Espinosa, M. G., Lorenzo, O., & Brouquisse, R. (2019). Nitric oxide molecular targets: Reprogramming plant development upon stress. Journal of Experimental Botany, 70(17), 4441–4460. https://doi.org/10.1093/jxb/erz339
  • Saranya, N., Devi, P., Nithiyanantham, S., & Jeyalaxmi, R. (2014). Cells disruption by ultrasonication. BioNanoScience, 4(4), 335–337. https://doi.org/10.1007/s12668-014-0149-2
  • Sheikh, M., Malik, A. R., Meghavanshi, M. K., & Mahmood, I. (2012). Studies on some plant extracts for their antimicrobial potential against certain pathogenic microorganisms. American Journal of Plant Sciences, 3(2), 209. https://doi.org/10.4236/ajps.2012.32025
  • Shilpa, K., & Lakshmi, B. S. (2019). Influence of exogenous cinnamic acid on the production of chlorogenic acid in cichorium intybus L cell culture. South African Journal of Botany, 125, 527–532. https://doi.org/10.1016/j.sajb.2019.01.004
  • Singh, N., Phukan, T., Sharma, P. L., Kabyashree, K., Barman, A., Kumar, R., Sonti, R. V., Genin, S., & Ray, S. K. (2018). An innovative root inoculation method to study ralstonia solanacearum pathogenicity in tomato seedlings. Phytopathology, 108(4), 436–442. https://doi.org/10.1094/PHYTO-08-17-0291-R
  • Solano, R., Stepanova, A., Chao, Q., & Ecker, J. R. (1998). Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes & Development, 12(23), 3703–3714. https://doi.org/10.1101/gad.12.23.3703
  • Stork, W., Kim, J. G., & Mudgett, M. B. (2015). Functional analysis of plant defense suppression and activation by the xanthomonas core type III effector XopX. Molecular Plant-Microbe Interactions, 28(2), 180–194. https://doi.org/10.1094/MPMI-09-14-0263-R
  • Thieme, F., Koebnik, R., Bekel, T., Berger, C., Boch, J., Büttner, D., Caldana, C., Gaigalat, L., Goesmann, A., Kay, S., Kirchner, O., Lanz, C., Linke, B., McHardy, A. C., Meyer, F., Mittenhuber, G., Nies, D. H., Niesbach-Klösgen, U., Patschkowski, T. , and Kaiser, O. (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. Journal of Bacteriology, 187(21), 7254–7266. https://doi.org/10.1128/JB.187.21.7254-7266.2005
  • Vanitha, S. C., Niranjana, S. R., & Umesha, S. (2009). Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. Journal of Phytopathology, 157(9), 552–557. https://doi.org/10.1111/j.1439-0434.2008.01526.x
  • Vu, T. T., Kim, H., Tran, V. K., Vu, H. D., Hoang, T. X., Han, J. W., Choi, Y. H., Jang, K. S., Choi, G. J., Kim, J. C., & Gupta, V. (2017). Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. Plos One, 12(7), e0181499. https://doi.org/10.1371/journal.pone.0181499
  • Xue, H., Lozano-Durán, R., & Macho, A. P. (2020). Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum. Plants (Basel, Switzerland), 9(4), 516. https://doi.org/10.3390/plants9040516
  • Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in plant science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049
  • Zheng, X., Zhu, Y., Liu, B., Lin, N., & Zheng, D. (2017). Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots. Microbial Pathogenesis, 113, 144–151. https://doi.org/10.1016/j.micpath.2017.10.046