1,032
Views
0
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Localized phosphorus application via P-dipping is more effective for improving initial rice growth in lower temperature conditions

& ORCID Icon
Pages 28-35 | Received 13 Jul 2022, Accepted 12 Dec 2022, Published online: 21 Dec 2022

References

  • Adams, A. M., Gillespie, A. W., Kar, G., Koala, S., Ouattara, B., Kimaro, A. A., Bationo, A., Akponikpe, P. B. I., Schoenau, J. J., & Peak, D. (2016). Long term effects of reduced fertilizer rates on millet yields and soil properties in the West-African Sahel. Nutrient Cycling in Agroecosystems, 106(1), 17–29. https://doi.org/10.1007/s10705-016-9786-x
  • Amthor, J. S., Bar-Even, A., Hanson, A. D., Millar, A. H., Stitt, M., Sweetlove, L. J., & Tyerman, S. D. (2019). Engineering strategies to boost crop productivity by cutting respiratory carbon loss. The Plant Cell, 31(2), 297–314. https://doi.org/10.1105/tpc.18.00743
  • Aune, J. B., & Bationo, A. (2008). Agricultural intensification in the Sahel – the ladder approach. Agricultural System, 98(2), 119–125. https://doi.org/10.1016/j.agsy.2008.05.002
  • Aune, J. B., Doumbia, M., & Berthe, A. (2007). Microfertilizing sorghum and pearl millet in Mali: Agronomic, economic and social feasibility. Outlook on agriculture, 36(3), 199–203. https://doi.org/10.5367/000000007781891504
  • Balasubramanian, V., Ratsimandresy, J., Razafinjara, A. L., & Rabeson, R. (1994). Phosphorus use efficiency in rice soils of the central highlands of Madagascar. Transactions of the XV International Congress on Soil Science, 5, 371–372. 10–16 July 1994 Acapulco, Mexico
  • De Datta, S. K., & Charoenchamratcheep, C. (1990). Phosphorus requirements and management for lowland rice. Phosphorus requirements for sustainable agriculture in Asia and Oceania. Proceedings of a Symposium. International Rice Research Institute, Manila, Philippines, pp. 307–324, 6-10 March 1989.
  • Hasegawa, P. M., Bressan, R. A., Zhu, J., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463–499. https://doi.org/10.1146/annurev.arplant.51.1.463
  • Hayashi, K., Abdoulaye, T., Gerard, B., & Bationo, A. (2008). Evaluation of application timing in fertilizer micro-dosing technology on millet production in Niger, West Africa. Nutrient Cycling in Agroecosystems, 80(3), 257–265. https://doi.org/10.1007/s10705-007-9141-3
  • Ibrahim, A., Abaidoo, R. C., Fatondji, D., & Opoku, A. (2015). Hill placement of manure and fertilizer micro-dosing improves yield and water use efficiency in the Sahelian low input milled-based cropping system. Field Crop Research, 180, 29–36. https://doi.org/10.1016/j.fcr.2015.04.022
  • IPCC. (2014). Climate change 2014: Synthesis report. In Pachauri, R. K. and Meyer, L. A. (Eds.), Contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change [core writing team (p. 151). IPCC.
  • Khalid, R. A., Patrick, W. H., Jr., & Delaune, R. D. (1977). Phosphorus sorption characteristics of flooded soils. Soil Science Society of American Journal, 41(2), 305–310. https://doi.org/10.2136/sssaj1977.03615995004100020026x
  • Kotera, A., Nawata, E., Chuong, P. V., Giao, N. N., & Sakuratani, T. (2004). A model for phenological development of vietnamese rice influenced by transplanting shock. Plant production science, 7(1), 62–69. https://doi.org/10.1626/pps.7.62
  • Lee, H., Hwang, W., Jeong, J., Yang, S. Y., Jeong, N., Lee, C., & Choi, M. (2021). Physiological causes of transplantation shock on rice growth inhibition and delayed heading. Scientific Reports, 11(1), 16818. https://doi.org/10.1038/s41598-021-96009-z
  • Muehlig-Versen, B., Buerkert, A., Bationo, A., & Roemheld, V. (2003). Phosphorus placement on acid arenosols of the west African Sahel. Experimental Agriculture, 39(3), 307–325. https://doi.org/10.1017/S0014479703001261
  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chemica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5
  • Oo, A. Z., Tsujimoto, Y., Mukai, M., Nishigaki, T., Takai, T., & Uga, Y. (2021). Synergy between a shallow root system with a DRO1 homologue and localized P application improves P uptake of lowland rice. Scientific reports, 11(1), 9484. https://doi.org/10.1038/s41598-021-89129-z
  • Oo, A. Z., Tsujimoto, Y., & Rakotoarisoa, N. M. (2020). Optimizing the phosphorus concentration and duration of seedling dipping in soil slurry for accelerating the initial growth of transplanted rice. Agronomy, 10(2), 240. https://doi.org/10.3390/agronomy10020240
  • Oo, A. Z., Tsujimoto, Y., Rakotoarisoa, N. M., Kawamura, K., & Nishigaki, T. (2020). P-dipping of rice seedlings increases applied P use efficiency in high P-fixing soils. Scientific reports, 10(1), 11919. https://doi.org/10.1038/s41598-020-68977-1
  • Raju, S. A., Rao, M. M. G. V., Sathe, A., & Rao, S. I. V. (1980). Root dipping: A technique to supply P to lowland rice. Journal of Nuclear Agriculture and Biology, 9(4), 141–143.
  • Rakotoarisoa, N. M., Tsujimoto, Y., & Oo, A. Z. (2020). Dipping rice seedlings in P-enriched slurry increases grain yield and shortens days to heading on P-deficient lowlands in the central highlands of Madagascar. Field Crop Research, 254, 107806. https://doi.org/10.1016/j.fcr.2020.107806
  • Rakotoson, T., Tsujimoto, Y., & Nishigaki, T. (2022). Phosphorus management strategies to increase lowland rice yields in sub-Saharan Africa: A review. Field Crops Research, 275, 108370. https://doi.org/10.1016/j.fcr.2021.108370
  • Ramanathan, P., & Kothandaraman, G. V. (1984). Application methods to improve phosphorus uptake in rice. International Rice Research Newsletter, 9, Soil and Crop management No. 21.
  • Roy, A. C., & De Datta, S. K. (1985). Phosphorus sorption isotherms for evaluating phosphorus requirement of wetland rice soils. Plant and Soil, 86(2), 185–196. https://doi.org/10.1007/BF02182893
  • Tovihoudji, P. G., Akponikpe, P. I., Agbossou, E. K., Bertin, P., & Bielders, C. L. (2017). Fertilizer microdosing enhances maize yields but may exacerbate nutrient mining in maize cropping systems in northern Benin. Field Crops Research, 213, 130–142. https://doi.org/10.1016/j.fcr.2017.08.003
  • Tsujimoto, Y., Rakotoson, T., Tanaka, A., & Saito, K. (2019). Challenges and opportunities for improving N use efficiency for rice production in sub-Saharan Africa. Plant production science, 22(4), 413–427. https://doi.org/10.1080/1343943X.2019.1617638
  • Tsujimoto, Y., Sakata, M., Raharinivo, V., Tanaka, J. P., & Takai, T. (2020). AZ-97 (Oryza sativa ssp. Indica) exhibits superior biomass production by maintaining the tiller numbers, leaf width, and leaf elongation rate under phosphorus deficiency. Plant production science, 24(1), 41–51. https://doi.org/10.1080/1343943X.2020.1808026
  • Twomlow, S., Rohrbach, D., Dimes, J., Rusike, J., Mupangwa, W., Ncube, B., Hove, L., Moyo, M., Mashingaidze, N., & Mahposa, P. (2010). Micro-dosing as a pathway to Africa’s green revolution: Evidence from broad-scale on-farm trials. Nutrient Cycling in Agroecosystems, 88(1), 3–15. https://doi.org/10.1007/s10705-008-9200-4
  • Vandamme, E., Ahouanton, K., Mwakasege, L., Mujuni, S., Mujawamariya, G., Kamanda, J., Senthilkumar, K., & Saito, K. (2018). Phosphorus micro-dosing as an entry point to sustainable intensification of rice systems in sub-Saharan Africa. Field Crops Research, 222, 39–49. https://doi.org/10.1016/j.fcr.2018.02.016
  • Yamamoto, Y. (1989). Studies on transplanting injury in rice plant. III. Effects of root pruning treatment on the organic constituents in each organ and rooting of seedling after transplanting. Japanese Journal of Crop Science, 58(4), 535–540. In Japanese with English summary.