1,926
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of arbuscular mycorrhizal fungi inoculation on infection and growth of rice and pearl millet in upland fields with three water regimes

, , & ORCID Icon
Pages 350-363 | Received 11 Feb 2023, Accepted 16 Aug 2023, Published online: 29 Aug 2023

References

  • Akyol, T. Y., Niwa, R., Hirakawa, H., Maruyama, H., Sato, T., Suzuki, T., Fukunaga, A., Sato, T., Yoshida, S., Tawaraya, K., Saito, M., Ezawa, T., & Sato, S. (2019). Impact of introduction of arbuscular mycorrhizal fungi on the root microbial community in agricultural fields. Microbes and Environments, 34(1), 23–32. https://doi.org/10.1264/JSME2.ME18109
  • Al-Karaki, G., McMichael, B., & Zak, J. (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14(4), 263–269. https://doi.org/10.1007/s00572-003-0265-2
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO. https://www.fao.org/3/r4082e/r4082e00.htm#Contents
  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3–42. https://doi.org/10.1007/s005720100097
  • Augé, R. M., Toler, H. D., & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza, 25(1), 13–24. https://doi.org/10.1007/s00572-014-0585-4
  • Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y., & Feng, H. (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences, 20(17), 4199. https://doi.org/10.3390/ijms20174199
  • Bahmani, M., Naghdi, R., & Kartoolinejad, D. (2018). Milkweed seedlings tolerance against water stress: Comparison of inoculations with Rhizophagus irregularis and Pseudomonas putida. Environmental Technology & Innovation, 10, 111–121. https://doi.org/10.1016/j.eti.2018.01.001
  • Basyal, B., & Emery, S. M. (2021). An arbuscular mycorrhizal fungus alters switchgrass growth, root architecture, and cell wall chemistry across a soil moisture gradient. Mycorrhiza, 31(2), 251–258. https://doi.org/10.1007/s00572-020-00992-6
  • Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1068. https://doi.org/10.3389/fpls.2019.01068
  • Bethlenfalvay, G. J., Brown, M. S., Ames, R. N., & Thomas, R. S. (1988). Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiologia Plantarum, 72(3), 565–571. https://doi.org/10.1111/j.1399-3054.1988.tb09166.x
  • Bonfante, P., & Genre, A. (2010). Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 1(1), 1–11. https://doi.org/10.1038/ncomms1046
  • Chandrasekaran, M. (2020). A meta-analytical approach on arbuscular mycorrhizal fungi inoculation efficiency on plant growth and nutrient uptake. Agriculture, 10(9), 370. https://doi.org/10.3390/agriculture10090370
  • Chareesri, A., de Deyn, G. B., Sergeeva, L., Polthanee, A., & Kuyper, T. W. (2020). Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought. Mycorrhiza, 30(2–3), 315–328. https://doi.org/10.1007/s00572-020-00953-z
  • Fabbrin, E. G., Gogorcena, Y., Mogor, Á. F., Garmendia, I., & Goicoechea, N. (2015). Pearl millet growth and biochemical alterations determined by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop and Pasture Science, 66(8), 831–840. https://doi.org/10.1071/CP14089
  • FAO. (2022). International Year of Millets 2023. In Communication Handbook and Toolkit, FAO (p. 21). Rome, Italy.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021
  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
  • Hayashi, M., Niwa, R., Urashima, Y., Suga, Y., Sato, S., Hirakawa, H., Yoshida, S., Ezawa, T., & Karasawa, T. (2018). Inoculum effect of arbuscular mycorrhizal fungi on soybeans grown in long-term bare-fallowed field with low phosphate availability. Soil Science and Plant Nutrition, 64(3), 306–311. https://doi.org/10.1080/00380768.2018.1473007
  • Hetrick, B. A. D., Leslie, J. F., Wilson, G. T., & Kitt, D. G. (1988). Physical and topological assessment of effects of a vesicular-arbuscular mycorrhizal fungus on root architecture of big bluestem. New Phytologist, 110(1), 85–96. https://doi.org/10.1111/j.1469-8137.1988.tb00240.x
  • Isobe, K., & Tsuboki, Y. (1998). The relationship between growth promotion by arbuscular mycorrhizal fungi and root morphology and phosphorus absorption in gramineous and leguminous crops. Japanese Journal of Crop Science, 67(3), 347–352. in Japanese with English abstract. https://doi.org/10.1626/jcs.67.347.
  • Jabborova, D., Annapurna, K., Al-Sadi, A. M., Alharbi, S. A., Datta, R., & Zuan, A. T. K. (2021). Biochar and arbuscular mycorrhizal fungi mediated enhanced drought tolerance in okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi Journal of Biological Sciences, 28(10), 5490–5499. https://doi.org/10.1016/j.sjbs.2021.08.016
  • Kakouridis, A., Hagen, J. A., Kan, M. P., Mambelli, S., Feldman, L. J., Herman, D. J., Weber, P. K., Pett‐Ridge, J., & Firestone, M. K. (2022). Routes to roots: Direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytologist, 236(1), 210–221. https://doi.org/10.1111/nph.18281
  • Karasawa, T., Takebe, M., & Kasahara, Y. (2000). Arbuscular mycorrhizal (AM) effects on maize growth and AM colonization of roots under various soil moisture conditions. Soil Science and Plant Nutrition, 46(1), 61–67. https://doi.org/10.1080/00380768.2000.10408762
  • Kato, Y., Kamoshita, A., Yamagishi, J., & Abe, J. (2006). Growth of three rice (Oryza sativa L.) cultivars under upland conditions with different levels of water supply 1. Nitrogen content and dry matter production. Plant Production Science, 9(4), 422–434. https://doi.org/10.1626/pps.9.422
  • Kobae, Y. (2019). Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Frontiers in Environmental Science, 6, 159. https://doi.org/10.3389/fenvs.2018.00159
  • Konvalinková, T., Püschel, D., Janoušková, M., Gryndler, M., & Jansa, J. (2015). Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Frontiers in Plant Science, 6(FEB), 65. https://doi.org/10.3389/fpls.2015.00065
  • Luo, X., Shi, S., Liu, Y., Yang, H., Li, N., Dong, Z., Zhu, B., & He, X. (2021). Arbuscular mycorrhizal fungal communities of topsoil and subsoil of an annual maize-wheat rotation after 15-years of differential mineral and organic fertilization. Agriculture, Ecosystems & Environment, 315, 107442. https://doi.org/10.1016/j.agee.2021.107442
  • Marro, N., Grilli, G., Soteras, F., Caccia, M., Longo, S., Cofré, N., Borda, V., Burni, M., Janoušková, M., & Urcelay, C. (2022). The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: A global meta‐analysis. New Phytologist, 235(1), 320–332. https://doi.org/10.1111/nph.18102
  • Morimoto, S., Uchida, T., Matsunami, H., & Kobayashi, H. (2018). Effect of winter wheat cover cropping with no-till cultivation on the community structure of arbuscular mycorrhizal fungi colonizing the subsequent soybean. Soil Science and Plant Nutrition, 64(5), 545–553. https://doi.org/10.1080/00380768.2018.1486171
  • Müller, A., Eltigani, A., & George, E. (2019). The abundance of arbuscular mycorrhizal fungal species in symbiosis with okra plants is affected by induced drought conditions in a calcareous substrate. Rhizosphere, 10, 100150. https://doi.org/10.1016/j.rhisph.2019.100150
  • Nguyen, H. T. A., Kamoshita, A., Ramalingam, P., & Y, P. (2022). Genetic analysis of root vascular traits in a population from two temperate japonica rice ecotypes. Plant Production Science. https://doi.org/10.1080/1343943X.2022.2085588
  • Niwa, R., Koyama, T., Sato, T., Adachi, K., Tawaraya, K., Sato, S., Hirakawa, H., Yoshida, S., & Ezawa, T. (2018). Dissection of niche competition between introduced and indigenous arbuscular mycorrhizal fungi with respect to soybean yield responses. Scientific Reports, 8, 1–11. https://doi.org/10.1038/s41598-018-25701-4
  • Oehl, F., Sieverding, E., Ineichen, K., Ris, E., Boller, T., & Wiemken, A. (2005). Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist, 165(1), 273–283. https://doi.org/10.1111/j.1469-8137.2004.01235.x
  • Oliveira, T. C., Cabral, J. S. R., Santana, L. R., Tavares, G. G., Santos, L. D. S., Paim, T. P., Müller, C., Silva, F. G., Costa, A. C., Souchie, E. L., & Mendes, G. C. (2022). The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Scientific Reports, 12(1), 1–15. https://doi.org/10.1038/s41598-022-13059-7
  • P, Y. (2023). Effects of water regime and inoculation with arbuscular mycorrhizal fungi on growth and mycorrhizal communities of rice and pearl millet. Doctoral Dissertation, The University of Tokyo.
  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158–IN18. https://doi.org/10.1016/S0007-1536(70)80110-3
  • Quiroga, G., Erice, G., Aroca, R., Chaumont, F., & Ruiz-Lozano, J. M. (2017). Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Frontiers in Plant Science, 8(June), 1–15. https://doi.org/10.3389/fpls.2017.01056
  • Rillig, M. C., & Field, C. B. (2003). Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant and Soil, 254(2), 383–391. https://doi.org/10.1023/A:1025539100767
  • Ruiz-Sánchez, M., Aroca, R., Muñoz, Y., Polón, R., & Ruiz-Lozano, J. M. (2010). The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, 167(11), 862–869. https://doi.org/10.1016/j.jplph.2010.01.018
  • Ruiz-Sánchez, M., Cabrera-Rodríguez, J. A., Dell Amico-Rodríguez, J. M., Muñoz-Hernández, Y., Aroca-Álvarez, R., & Ruiz-Lozano, J. M. (2021). Categorization of the water status of rice inoculated with arbuscular mycorrhizae and with water deficit. Agronomy Mesoamerican, 32(2), 339–355. https://doi.org/10.15517/am.v32i2.42066
  • Salomon, M. J., Demarmels, R., Watts-Williams, S. J., McLaughlin, M. J., Kafle, A., Ketelsen, C., Soupir, A., Bücking, H., Cavagnaro, T. R., & van der Heijden, M. G. A. (2022). Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Applied Soil Ecology, 169, 104225. https://doi.org/10.1016/j.apsoil.2021.104225
  • Sato, K., Suyama, Y., Saito, M., & Sugawara, K. (2005). A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassland Science, 51(2), 179–181. https://doi.org/10.1111/j.1744-697X.2005.00023.x
  • Sisaphaithong, T., Hanai, S., Tomioka, R., Kobae, Y., Tanaka, A., Yano, K., Takenaka, C., & Hata, S. (2017). Varietal differences in the growth responses of rice to an arbuscular mycorrhizal fungus under natural upland conditions. Plant Signaling and Behavior, 12(1), e1274483. https://doi.org/10.1080/15592324.2016.1274483
  • Smith, S. E., Jakobsen, I., Grønlund, M., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156(3), 1050–1057. https://doi.org/10.1104/PP.111.174581
  • Sosa-Hernández, M. A., Leifheit, E. F., Ingraffia, R., & Rillig, M. C. (2019). Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: A solution right under our feet? Frontiers in Microbiology, 10(APR), 744. https://doi.org/10.3389/fmicb.2019.00744
  • Sosa-Hernández, M. A., Roy, J., Hempel, S., & Rillig, M. C. (2018). Evidence for subsoil specialization in arbuscular mycorrhizal fungi. Frontiers in Ecology and Evolution, 6(MAY), 67. https://doi.org/10.3389/fevo.2018.00067
  • Sylvia, D. M., Hammond, L. C., Bennett, J. M., Haas, J. H., & Linda, S. B. (1993). Field response of maize to a VAM fungus and water management. Agronomy Journal, 85(2), 193–198. https://doi.org/10.2134/agronj1993.00021962008500020006x
  • Vallino, M., Fiorilli, V., & Bonfante, P. (2014). Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant, Cell & Environment, 37(3), 557–572. https://doi.org/10.1111/pce.12177
  • Van Geel, M., Busschaert, P., Honnay, O., & Lievens, B. (2014). Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. Journal of Microbiological Methods, 106, 93–100. https://doi.org/10.1016/j.mimet.2014.08.006
  • Verbruggen, E., van der Heijden, M. G., Rillig, M. C., & Kiers, E. T. (2013). Mycorrhizal fungal establishment in agricultural soils: Factors determining inoculation success. New Phytologist, 197(4), 1104–1109. https://doi.org/10.1111/j.1469-8137.2012.04348.x
  • Wang, Y., Bao, X., & Li, S. (2021). Effects of arbuscular mycorrhizal fungi on rice growth under different flooding and shading regimes. Frontiers in Microbiology, 12(October), 1–15. https://doi.org/10.3389/fmicb.2021.756752
  • Watanarojanaporn, N., Boonkerd, N., Tittabutr, P., Longtonglang, A., Young, J. P. W., & Teaumroong, N. (2013). Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes and Environments, 28(3), 316–324. https://doi.org/10.1264/jsme2.ME13011
  • Yamagishi, J., Nakamoto, T., & Richner, W. (2003). Stability of spatial variability of wheat and maize biomass in a small field managed under two contrasting tillage systems over 3 years. Field Crops Research, 81(2–3), 95–108. https://doi.org/10.1016/S0378-4290(02)00213-7
  • Y, P., Kamoshita, A., Norisada, M., & Deshmukh, V. (2020). Eco-physiological evaluation of Stele transversal area 1 for rice root anatomy and shoot growth. Plant Production Science, 23(2), 202–210. https://doi.org/10.1080/1343943X.2020.1727754
  • Zhang, F., Zou, Y. N., & Wu, Q. S. (2018). Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Scientia Horticulturae, 229, 132–136. https://doi.org/10.1016/j.scienta.2017.10.038
  • Zou, Y. N., Wang, P., Liu, C. Y., Ni, Q. D., Zhang, D. J., & Wu, Q. S. (2017). Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/srep41134