1,830
Views
4
CrossRef citations to date
0
Altmetric
Building Structures and Materials

Investigation of Strain Evolutions in Prestressed Reinforced Concrete Beams Based on Nonlinear Finite Element Analyses Considering Concrete Plasticity and Concrete Damaged Plasticity

&
Pages 448-468 | Received 08 Jun 2020, Accepted 22 Dec 2020, Published online: 25 Jan 2021

References

  • ABAQUS. 2014. “Analysis User’s Manual 6.14-2.” Providence, RI: Dassault Systèmes Simulia Corp.
  • Birtel, V., and P. Mark. 2006. “Parameterised Finite Element Modelling of RC Beam Shear Failure.” ABAQUS users’ conference, 95–108. Cambridge, Massachusetts.
  • Bjerkeli, L., A. Tomaszewicz, and J. J. Jensen. 1990. “Deformation Properties and Ductility of High-Strength Concrete.” Symposium Paper 121: 215–238. doi:https://doi.org/10.14359/2844.
  • Chern, J.-C., C.-M. You, and Z. P. Bazant. 1992. “Deformation of Progressively Cracking Partially Prestressed Concrete Beams.” PCI Journal 37 (1): 74–84. doi:https://doi.org/10.15554/pcij.01011992.74.85.
  • European committee for standardization. 2002. BS EN 1990-1-1:1994. Eurocode 1: Basis of structural design.
  • European committee for standardization. 2004. BS EN 1992-1-1:2004. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings.
  • Faridmehr, I., M. H. Osman, A. B. Adnan, A. F. Nejad, R. Hodjati, and M. Azimi. 2014. “Correlation between Engineering Stress-Strain and True Stress-Strain Curve.” American Journal of Civil Engineering and Architecture 2 (1): 53–59. doi:https://doi.org/10.12691/ajcea-2-1-6.
  • Hafezolghorani, M., F. Hejazi, R. Vaghei, M. S. B. Jaafar, and K. Karimzade. 2017. “Simplified Damage Plasticity Model for Concrete.” Structural Engineering International Nr. 1/2017. doi:https://doi.org/10.2749/101686616X1081.
  • Hognestad, E. 1951. Study of Combined Bending and Axial Load in Reinforced Concrete Members. University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station.
  • Hong, W. K. 2019. Hybrid Composite Precast Systems: Numerical Investigation to Construction. United Kingdom: Woodhead Publishing Elsevier.
  • Hussien, O. F., T. H. K. Elafandy, A. A. Abdelrahman, S. A. Abdel Baky, and E. A. Nasr. 2012. “Behavior of Bonded and Unbonded Prestressed Normal and High Strength Concrete Beams.” HBRC Journal 8 (3): 239–251. doi:https://doi.org/10.1016/j.hbrcj.2012.10.008.
  • Lee, S.-H., A. Abolmaali, K.-J. Shin, and H.-D. Lee. 2020. “ABAQUS Modeling for Post-tensioned Reinforced Concrete Beams.” Journal of Building Engineering 30: 68–78. doi:https://doi.org/10.1016/j.jobe.2020.101273.
  • Lou, T., S. M. R. Lopes, and A. V. Lopes. 2013. “Nonlinear and Time-dependent Analysis of Continuous Unbonded Prestressed Concrete Beams.” Computers and Structures 119: 166–176. doi:https://doi.org/10.1016/j.compstruc.2012.12.014.
  • Mast, R. F., M. Dawood, S. H. Rizkalla, and P. Zia. 2008. “Flexural Strength Design of Concrete Beams Reinforced with High-Strength Steel Bars.” ACI Structural Journal 105 (5): 570–577. doi:https://doi.org/10.22636/MKCI.2010.22.5.83.
  • Mercan, B., A. E. Schultz, and H. K. Stolarski. 2010. “Finite Element Modeling of Prestressed Concrete Spandrel Beams.” Engineering Structures 32 (9): 2804–2813. doi:https://doi.org/10.1016/j.engstruct.2010.04.049.
  • Michał, S., and W. Andrzej. 2015. “Calibration of the CDP Model Parameters in Abaqus.” The 2015 World Congress on Adcances in structural Engineering and Merchanics. Incheon, Korea.
  • Moreirab, L. S., J. B. M. Sousa Jr., and E. Parente Jr. 2018. “Nonlinear Finite Element Simulation of Unbonded Prestressed Concrete Beams.” Engineering Structures 170: 167–177. doi:https://doi.org/10.1016/j.engstruct.2018.05.077.
  • Nadim Hassoun, M., and A. Al-Manaseer. 2015. Structural Concrete, Theory and Design Sixth Edition. Hoboken, New Jersey: John Wiley & Sons.
  • Nzabonimpa, J. D., W. K. Hong, and J. Kim. 2017. “Strength and Post‐yield Behavior of T‐section Steel Encased by Structural Concrete.” The Structural Design of Tall and Special Buildings 27 (5): e1447. doi:https://doi.org/10.1002/tal.1447.
  • Nzabonimpa, J. D., and W.-K. Hong. 2018. “Use of Artificial Damping Factors to Enhance Numerical Stability for Irregular Joints.” Journal of Constructional Steel Research 148: 295–303. doi:https://doi.org/10.1016/j.jcsr.2018.05.034.
  • Pendyala, R., P. Mendis, and I. Patnaikuni. 1996. “Full-Range Behavior of High-Strength Concrete Flexural Members: Comparison of Ductility Parameters of High and Normal-Strength Concrete Members.ACI Structural Journal, 93 (1): 30–35.
  • Shehata, I., L. Shehata, and T. S. Mattos. 2000. “Stress-strain Curve for the Design of High-strength Concrete Elements.” Materials and Structures 33 (7): 411–418. doi:https://doi.org/10.1007/BF02480659.
  • Silva, R., W. V. Silva, J. Y. de Farias, M. A. A. Santos, and L. O. Neiva. 2020. “Experimental and Numerical Analyses of the Failure of Prestressed Concrete Railway Sleepers.” MDPI Materials 13 (7): 1704. doi:https://doi.org/10.3390/ma13071704.
  • Standard, A. A. 2011. “Building Code Requirements for Structural Concrete (ACI 318-11).” In American Concrete Institute.
  • Tao, X., and D. Gongchen. 1985. “Ultimate Stress of Unbonded Tendons in Partially Prestressed Concrete Beams.” PCI Journal 30 (6): 72–91. doi:https://doi.org/10.15554/pcij.11011985.72.91.
  • Van Gysel, A., and L. Taerwe. 1996. “Analytical Formulation of the Complete Stress-strain Curve for High Strength Concrete.” Materials and Structures 29 (9): 529–533. doi:https://doi.org/10.1007/BF02485952.
  • Vu, N. A., and R. F. Castel. 2010. “Response of Post-tensioned Concrete Beams with Unbonded Tendons Including Serviceability and Ultimate State.” Engineering Structures 32 (2): 556–569. doi:https://doi.org/10.1016/j.engstruct.2009.11.001.
  • Warwaruk, J., M. A. Sozen, and C. P. Siess. 1962. “Investigation of Prestressed Reinforced Concrete for Highway Bridges, Part III: Strength and Behavior in Flexure of Prestressed Concrete Beams.” Engineering Experiment Station Bulletin No. 464.
  • Yapar, O., P. K. Basu, and N. Nordendale. 2015. “Accurate Finite Element Modeling of Pretensioned Prestressed Concrete Beams.” Engineering Structures 101: 163–178. doi:https://doi.org/10.1016/j.engstruct.2015.07.018.