898
Views
3
CrossRef citations to date
0
Altmetric
Building Structures and Materials

Reverse designs of doubly reinforced concrete beams using Gaussian process regression models enhanced by sequence training/designing technique based on feature selection algorithms

&
Pages 2345-2370 | Received 16 Apr 2021, Accepted 18 Aug 2021, Published online: 27 Oct 2021

References

  • Alacalı, S. N., B. Doran, and B. Akbas. 2006, September. “Predicting Lateral Confinement Coefficient for R/C Rectangular Columns by a Neural Network Model.” In EAEE, First European Conference on Earthquake Engineering and Seismology. Geneva, Switzerland.
  • Al-Rahmani, A. H., H. A. Rasheed, and Y. Najjar. 2013. “Intelligent Damage Detection in Bridge Girders: Hybrid Approach.” Journal of Engineering Mechanics 139 (3): 296–304. doi:10.1016/(asce)em.1943-7889.0000536.
  • Behnood, A., and E. M. Golafshani. 2020. “Machine Learning Study of the Mechanical Properties of Concretes Containing Waste Foundry Sand.” Construction and Building Materials 243: 118152. doi:10.1016/j.conbuildmat.2020.118152.
  • Botchkarev, A. 2019. “A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms.” Interdisciplinary Journal of Information, Knowledge, and Management 14 (January): 45–76. doi:10.28945/4184.
  • Cai, B., G. L. Pan, and F. Fu. 2020. “Prediction of the Postfire Flexural Capacity of RC Beam Using GA-BPNN Machine Learning.” Journal of Performance of Constructed Facilities 34 (6): 04020105. doi:10.1016/(ASCE)CF.1943-5509.0001514.
  • Dehkordi, B. Z., R. Abdipour, S. Motaghed, A. K. Charkh, H. Sina, and M. S. Shahid Zad. 2012. “Reinforced Concrete Frame Failure Prediction Using Neural Network Algorithm.” Journal of Applied Sciences 12 (5): 498–501. doi:10.3923/jas.2012.498.501.
  • Hong, W. K. 2019. Hybrid Composite Precast Systems: Numerical Investigation to Construction. Cambridge, USA: Elsevier Woodhead Publishing.
  • Hore, S., S. Chatterjee, S. Sarkar, N. Dey, A. S. Ashour, D. Balas-Timar, and V. E. Balas. 2016. “Neural-based Prediction of Structural Failure of Multistoried RC Buildings.” Structural Engineering and Mechanics 58 (3): 459–473. doi:10.12989/sem.2016.58.3.459.
  • Hoshyar, A. N., S. Kharkovsky, S. Taghavipour, B. Samali, and R. Liyanapathirana. 2017, November. “Structural Damage Detection of a Concrete Based on the Autoregressive All-pole Model Parameters and Artificial Intelligence Techniques.” In Proceedings of the 9th International Conference on Signal Processing Systems (57–61). Auckland, New Zealand. doi:10.1145/3163080.3163120.
  • Hoshyar, A. N., B. Samali, R. Liyanapathirana, A. N. Houshyar, and Y. Yu. 2020. “Structural Damage Detection and Localization Using a Hybrid Method and Artificial Intelligence Techniques.” Structural Health Monitoring 19 (5): 1507–1523. doi:10.1177/1475921719887768.
  • Kang, F., S. Han, R. Salgado, and J. Li. 2015. “System Probabilistic Stability Analysis of Soil Slopes Using Gaussian Process Regression with Latin Hypercube Sampling.” Computers and Geotechnics 63: 13–25. doi:10.1016/j.compgeo.2014.08.010.
  • Kang, F., and J. Li. 2020. “Displacement Model for Concrete Dam Safety Monitoring via Gaussian Process Regression considering Extreme Air Temperature.” Journal of Structural Engineering 146 (1): 05019001. doi:10.1061/(asce)st.1943-541x.0002467.
  • Kang, F., J. Li, and J. Dai. 2019. “Prediction of Long-term Temperature Effect in Structural Health Monitoring of Concrete Dams Using Support Vector Machines with Jaya Optimizer and Salp Swarm Algorithms.” Advances in Engineering Software 131 (January): 60–76. doi:10.1016/j.advengsoft.2019.03.003.
  • Kohiyama, M., K. Oka, and T. Yamashita. 2020. “Detection Method of Unlearned Pattern Using Support Vector Machine in Damage Classification Based on Deep Neural Network.” Structural Control & Health Monitoring 27 (8): e2552. doi:10.1002/stc.2552.
  • Mathworks. 2011. “Introduction to Feature Selection (R2021a).” Accessed 2 April 2021 https://uk.mathworks.com/help/stats/feature-selection.html
  • MathWorks. 2021a. “Assess Model Performance in Regression Learner.” Accessed 2 June 2021 https://uk.mathworks.com/help/stats/assess-model-performance-in-regression-learner.html#mw_a8461b28-5e60-468b-93f5-268001183bbe
  • MathWorks. 2021b. Select Data and Validation for Regression Problem. Accessed June 2. https://uk.mathworks.com/help/stats/select-data-and-validation-for-regression-problem.html
  • Melville, J., K. S. Alguri, C. Deemer, and J. B. Harley.2018April. “Structural Damage Detection Using Deep Learning of Ultrasonic Guided Waves.” AIP Conference Proceedings. Dale E. Chimenti and Leonard J. Bond. (eds.) Vol. 1949, No. 1,230004. AIP Publishing LLC. doi:10.1063/1.5031651.
  • Mitropoulou, C. C., and M. Papadrakakis. 2011. “Developing Fragility Curves Based on Neural Network IDA Predictions.” Engineering Structures 33 (12): 3409–3421. doi:10.1016/j.engstruct.2011.07.005.
  • Naeej, M., M. Bali, M. R. Naeej, and J. V. Amiri. 2013. “Prediction of Lateral Confinement Coefficient in Reinforced Concrete Columns Using M5′ Machine Learning Method.” KSCE Journal of Civil Engineering 17 (7): 1714–1719. doi:10.1007/s12205-013-0214-3.
  • Naser, M. Z. 2018. “Deriving Temperature-dependent Material Models for Structural Steel through Artificial Intelligence.” Construction and Building Materials 191: 56–68. doi:10.1016/j.conbuildmat.2018.09.186.
  • Naser, M. Z., and A. Alavi. 2020. “Insights into Performance Fitness and Error Metrics for Machine Learning.” arXiv Preprint arXiv 2006: 00887.
  • Navot, A., L. Shpigelman, N. Tishby, and E. Vaadia. 2005. “Nearest Neighbor Based Feature Selection for Regression and Its Application to Neural Activity.” Advances in Neural Information Processing Systems 18: 996–1002.
  • Nguyen, N., and H. Hong. 2019. “Part I: The Analytical Model Predicting Post-Yield Behavior of Concrete-Encased Steel Beams considering Various Confinement Effects by Transverse Reinforcements and Steels.” Materials 12 (14): 2302. doi:10.3390/ma12142302.
  • Olalusi, O. B., and P. O. Awoyera. 2021. “Shear Capacity Prediction of Slender Reinforced Concrete Structures with Steel Fibers Using Machine Learning.” Engineering Structures 227 (November): 2020. doi:10.1016/j.engstruct.2020.111470.
  • Rafiei, M. H., and H. Adeli. 2017. “A Novel Machine Learning‐based Algorithm to Detect Damage in High‐rise Building Structures.” The Structural Design of Tall and Special Buildings 26 (18): e1400. doi:10.1002/tal.1400.
  • Robnik-Šikonja, M., and I. Kononenko. 1997, July. “An Adaptation of Relief for Attribute Estimation in Regression.” In Machine Learning: Proceedings of the Fourteenth International Conference (ICML’97) Nashville, Tennessee, USA, (Vol. 5, pp. 296–304).
  • Shyamala, P., S. Mondal, and S. Chakraborty. 2016. “Detection of Damage in Beam from Measured Natural Frequencies Using Support Vector Machine Algorithm.” Advance in Dynamics, Vibration and Control 06-310. 306-311.
  • Standard, A. A. 2014. Building Code Requirements for Structural Concrete (ACI 318–14). In American Concrete Institute. 38800 Country Club Drive Farmington Hills, MI 48331.
  • Standard, A. A. 2019. Building Code Requirements for Structural Concrete (ACI 318–19). In American Concrete Institute. 38800 Country Club DriveFarmington Hills, MI 48331.
  • Sun, H., H. V. Burton, and H. Huang. 2020. “Machine Learning Applications for Building Structural Design and Performance Assessment: State-of-the-art Review.” Journal of Building Engineering. doi:10.1016/j.jobe.2020.101816.
  • Tibaduiza, D., M. Á. Torres-Arredondo, J. Vitola, M. Anaya, and F. Pozo. 2018. “A Damage Classification Approach for Structural Health Monitoring Using Machine Learning.” Complexity 2018: 1–14. doi:10.1155/2018/5081283.
  • Yan, B., Y. Cui, L. Zhang, C. Zhang, Y. Yang, Z. Bao, and G. Ning. 2014. “Beam Structure Damage Identification Based on BP Neural Network and Support Vector Machine.” Mathematical Problems in Engineering 2014. doi:10.1155/2014/850141.
  • Zhang, Y., and H. V. Burton. 2019. “Pattern Recognition Approach to Assess the Residual Structural Capacity of Damaged Tall Buildings.” Structural Safety 78: 12–22. doi:10.1016/j.strusafe.2018.12.004.