569
Views
1
CrossRef citations to date
0
Altmetric
Building structures and materials

An ANN-based Hong-Lagrange algorithm (ANN-based HLA) for auto design-based building application (ABBA) with prestressed precast piperack frame

&
Pages 649-686 | Received 24 Dec 2022, Accepted 01 Aug 2023, Published online: 10 Sep 2023

References

  • Afshari, H., W. Hare, and S. Tesfamariam. 2019. “Constrained Multi-Objective Optimization Algorithms: Review and Comparison with Application in Reinforced Concrete Structures.” Applied Soft Computing 83:105631. https://doi.org/10.1016/j.asoc.2019.105631.
  • Baduge, S. K., S. Thilakarathna, J. S. Perera, M. Arashpour, P. Sharafi, B. Teodosio, A. Shringi, and P. Mendis. 2022. “Artificial Intelligence and Smart Vision for Building and Construction 4.0: Machine and Deep Learning Methods and Applications.” Automation in Construction 141 (June): 104440. https://doi.org/10.1016/j.autcon.2022.104440.
  • Building Code Requirements for Structural Concrete (ACI 318-19) Commentary on, & Building Code Requirements for Structural Concrete (ACI 318R-19). 2019. ACI Committee, 318. Farmington Hills, USA: American Concrete Institute.
  • Business Research Insights 2021. Pipe Hangers & Supports Market Size, Share, Growth, and Industry Analysis by Type and by Application. Accessed January 25, 2023. https://www.businessresearchinsights.com/market-reports/pipe-hangers-supports-market-101276.
  • Camp, C. V., and F. Huq. 2013. “CO2 and Cost Optimization of Reinforced Concrete Frames Using a Big Bang-Big Crunch Algorithm.” Engineering Structures 48:363–372. https://doi.org/10.1016/j.engstruct.2012.09.004.
  • Coley, D. A., and S. Schukat. 2002. “Low-Energy Design: Combining Computer-Based Optimisation and Human Judgement.” Building and Environment 37 (12): 1241–1247. https://doi.org/10.1016/S0360-1323(01)00106-8.
  • Fernando Martha, L., R. Lopez Rangel, P. Cortez Lopes, and C. Horta. 2022. LESM. Brasil: PONTIFICAL CATHOLIC UNIVERSITY OF RIO DE JANEIRO.
  • Fletcher, R. 2013. Practical Methods of Optimization. Hoboken, New Jersey, USA: John Wiley & Sons.
  • Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright. 1984. “Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints.” Transactions on Mathematical Software 10 (3): 282–298. https://doi.org/10.1145/1271.1276.
  • Gill, P. E., W. Murray, and M. H. Wright. 1991. Numerical Linear Algebra and Optimization. Vol. 1. Boston, USA: Addison Wesley.
  • Han, S. P. 1977. “A Globally Convergent Method for Nonlinear Programming.” Journal of Optimization Theory and Applications 22 (3): 297. https://doi.org/10.1007/BF00932858.
  • Hong, W.-K. 2019. Hybrid Composite Precast Systems (Numerical Investigation to Construction). December. Amsterdam, Netherlands: Elsevier.
  • Hong, W.-K.October2021Artificial Intelligence-Based Design of Reinforced Concrete StructuresDaegahttps://doi.org/10.1201/9781003314684
  • Hong, W.-K. 2022. AI-Based Data-Centric Engineering (AIDE) Using ANN-Based Hong-Lagrange Optimizations. Seoul, Korea: Daega.
  • Hong, W.-K.December2022aAI-Based Data-Centric Engineering (AIDE) for Reinforced Concrete Columns Using ANN-Based Hong-Lagrange OptimizationDaegahttps://doi.org/10.1201/9781003314684-3
  • Hong, W.-K.December2022bOptimization of a Reinforced Concrete Beam Design Using ANN-Based Lagrange AlgorithmCRC Presshttps://doi.org/10.1201/9781003314684-4
  • Hong, W.-K. 2023a. Artificial Neural Network-Based Optimized Design of Reinforced Concrete Structures. Tayor & Francis (CRC press). https://doi.org/10.1201/9781003314684.
  • Hong, W.-K. 2023b. Artificial Neural Network-Based Prestressed Concrete and Composite Structures. Tayor & Francis (CRC press). (In printing). March. https://doi.org/10.1201/9781003354796.
  • Hong, W.-K. 2023c. “(Artificial Neural Networks for Engineering Applications).” In Artificial Intelligence-Based Design of Reinforced Concrete Structures, 329–394. Elsevier. https://doi.org/10.1016/B978-0-443-15252-8.00004-2.
  • Hong, W.-K., J.-M. Kim, S.-C. Park, S.-G. Lee, S.-I. Kim, K.-J. Yoon, H.-C. Kim, and J. T. Kim. 2010. “A New Apartment Construction Technology with Effective CO2 Emission Reduction Capabilities.” Energy 35 (6). https://doi.org/10.1016/j.energy.2009.05.036.
  • Hong, W. K., V. T. Nguyen, D. H. Nguyen, and M. C. Nguyen. 2022. “An AI-Based Lagrange Optimization for a Design for Concrete Columns Encasing H-Shaped Steel Sections Under a Biaxial Bending.” Journal of Asian Architecture and Building Engineering 22 (2): 821–841. https://doi.org/10.1080/13467581.2022.2060985.
  • Hong, W. K., M. C. Nguyen, T. D. Pham, and T. A. Le. 2022. “Holistic Design of Pre-Tensioned Concrete Beams Based on Artificial Intelligence.” Journal of Asian Architecture and Building Engineering 22 (3): 1714–1745. https://doi.org/10.1080/13467581.2022.2097909.
  • Hong, W., T. D. Pham, W. Hong, and T. D. Pham. 2023. “An AI-Based Auto-Design for Optimizing RC Frames Using the ANN-Based Hong – Lagrange Algorithm an AI-Based Auto-Design for Optimizing RC Frames Using the ANN-Based Hong –.” Journal of Asian Architecture and Building Engineering 1–13. https://doi.org/10.1080/13467581.2023.2193621.
  • Katoch, S., S. S. Chauhan, and V. Kumar. 2021. “A Review on Genetic Algorithm: Past, Present, and Future.” Multimedia Tools & Applications 80 (5): 8091–8126. https://doi.org/10.1007/s11042-020-10139-6.
  • Kaveh, A., and S. R. Ardebili. 2022. “Optimum Design of 3D Reinforced Concrete Frames Using IPGO Algorithm.” https://doi.org/10.21203/rs.3.rs-1507625/v1.
  • Kaveh, A., and A. F. Behnam. 2013. “Design Optimization of Reinforced Concrete 3D Structures Considering Frequency Constraints via a Charged System Search.” Scientia Iranica 20 (3): 387–396. https://doi.org/10.1016/j.scient.2012.11.017.
  • Korea, G. S. C. 2015. Calculation sheet of KARBALA REFINERY PROJECT. Seoul Korea.
  • Kuhn, H. W., A. W. Tucker 1951. Nonlinear Programming. Berkeley Symposium on Mathematical Statistics and Probability, Statistical Laboratory, University of California, Berkeley.
  • Kuk Kim, S., W.-K. Hong, K. Hyo-Jin, and J. Tai Kim. 2013. “The Energy Efficient Expansion Remodeling Construction Method of Bearing Wall Apartment Buildings with Pre-Cast Composite Structural Systems.” Energy and Buildings 66:714–723. https://doi.org/10.1016/j.enbuild.2013.07.080.
  • Leyva, H., J. Bojórquez, E. Bojórquez, A. Reyes-Salazar, J. Carrillo, and F. López-Almansa. 2021. “Multi-Objective Seismic Design of BRBs-Reinforced Concrete Buildings Using Genetic Algorithms.” Structural and Multidisciplinary Optimization 64 (4): 2097–2112. https://doi.org/10.1007/s00158-021-02965-5.
  • Loads, M. D., and O. Structures. 2017. “Minimum Design Loads and Associated Criteria for Buildings and Other Structures.” Minimum Design Loads and Associated Criteria for Buildings and Other Structures. https://doi.org/10.1061/9780784414248.
  • MacGregor, J. G. 1976. “Safety and Limit States Design for Reinforced Concrete.” Canadian Journal of Civil Engineering 3 (4): 484–513. https://doi.org/10.1139/l76-055.
  • Machairas, V., A. Tsangrassoulis, and K. Axarli. 2014. “Algorithms for Optimization of Building Design: A Review.” Renewable and Sustainable Energy Reviews 31 (1364): 101–112. https://doi.org/10.1016/j.rser.2013.11.036.
  • MathWorks. 2022a. MATLAB (R2022a). Natick, Massachusetts, USA: MathWorks.
  • MathWorks. 2022b. “Deep Learning Toolbox: User’s Guide (R2022a).” Accessed July 26, 2012. https://www.mathworks.com/help/pdf_doc/deeplearning/nnet_ug.pdf.
  • MathWorks. 2022c. “Global Optimization: User’s Guide (R2022a).” Accessed July 26, 2012. https://www.mathworks.com/help/pdf_doc/gads/gads.pdf.
  • MathWorks. 2022d. “Optimization Toolbox: Documentation (R2022a).” Accessed July 26, 2022. https://uk.mathworks.com/help/optim/.
  • MathWorks. 2022e. “Parallel Computing Toolbox: Documentation (R2022a).” Accessed July 26, 2022. https://uk.mathworks.com/help/parallel-computing/.
  • MathWorks. 2022f. “Statistics and Machine Learning Toolbox: Documentation (R2022a).” Accessed July 26, 2022. https://uk.mathworks.com/help/stats/.
  • Mergos, P. E. 2021. “Optimum Design of 3D Reinforced Concrete Building Frames with the Flower Pollination Algorithm.” Journal of Building Engineering 44 (March): 102935. https://doi.org/10.1016/j.jobe.2021.102935.
  • Nikzad, H., and S. Yoshitomi. 2017. “Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall.“ World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering 11 (9): 1352–1358.
  • Nikzad, H., and S. Yoshitomi. 2018. “Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method.” International Journal of Urban and Civil Engineering 12 (6): 694–702.
  • Paya-Zaforteza, I., V. Yepes, A. Hospitaler, and F. González-Vidosa. 2009. “CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing.” Engineering Structures 31 (7): 1501–1508. https://doi.org/10.1016/j.engstruct.2009.02.034.
  • Peippo, K., P. D. Lund, and E. Vartiainen. 1999. “Multivariate Optimization of Design Trade-Offs for Solar Low Energy Buildings.” Energy and Buildings 29 (2): 189–205. https://doi.org/10.1016/s0378-7788(98)00055-3.
  • Powell, M. J. D. 1978. “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations. Lecture Notes in Mathematics.” In Numerical Analysis, G. A. Watson. edited by, Vol. 630 144–157, Springer Verlag. https://doi.org/10.1007/BFb0067703
  • Raiss, M. E. 1994. Post-Tensioned Concrete Floors-Design Handbook. Sandhurst, Berkshire, United Kingdom: Concrete Society.
  • Sahab, M. G., A. F. Ashour, and V. V. Toropov. 2005. “Cost Optimization of Reinforced Concrete Flat Slab Buildings.” Engineering Structures 27 (3): 313–322. https://doi.org/10.1016/j.engstruct.2004.10.002.
  • Sharafi, P., M. N. S. Hadi, and L. H. Teh. 2012. “Heuristic Approach for Optimum Cost and Layout Design of 3D Reinforced Concrete Frames.” Journal of Structural Engineering 138 (7): 853–863. https://doi.org/10.1061/(asce)st.1943-541x.0000508.
  • Sher, F., S. Chen, A. Raza, T. Rasheed, O. Razmkhah, T. Rashid, P. M. Rafi-Ul-Shan, and B. Erten. 2021. “Novel Strategies to Reduce Engine Emissions and Improve Energy Efficiency in Hybrid Vehicles.” Cleaner Engineering and Technology 2 (February): 100074. https://doi.org/10.1016/j.clet.2021.100074.
  • Sher, F., A. Hazafa, K. Marintseva, T. Rasheed, U. Ali, T. Rashid, A. Babu, and M. Khzouz. 2021. “Fully Solar Powered Doncaster Sheffield Airport: Energy Evaluation, Glare Analysis and CO2 Mitigation.” Sustainable Energy Technologies and Assessments 45 (October 2020):101122. https://doi.org/10.1016/j.seta.2021.101122.
  • Thilakarathna, P. S. M., S. Seo, K. S. K. Baduge, H. Lee, P. Mendis, and G. Foliente. 2020. “Embodied Carbon Analysis and Benchmarking Emissions of High and Ultra-High Strength Concrete Using Machine Learning Algorithms.” Journal of Cleaner Production 262 (February 2019): 121281. https://doi.org/10.1016/j.jclepro.2020.121281.
  • Villarrubia, G., J. F. De Paz, P. Chamoso, and F. De la Prieta. 2018. “Artificial Neural Networks Used in Optimization Problems.” Neurocomputing 272:10–16. https://doi.org/10.1016/j.neucom.2017.04.075.
  • Wang, L., W. Shi, X. Li, Q. Zhang, and Y. Zhou. 2019. “An Adaptive‐Passive Retuning Device for a Pendulum Tuned Mass Damper Considering Mass Uncertainty and Optimum Frequency.” Structural Control and Health Monitoring 26 (7): e2377. https://doi.org/10.1002/stc.2377.
  • Wang, L., W. Shi, Q. Zhang, and Y. Zhou. 2020. “Study on Adaptive-Passive Multiple Tuned Mass Damper with Variable Mass for a Large-Span Floor Structure.” Engineering Structures 209:110010. https://doi.org/10.1016/j.engstruct.2019.110010.
  • Wang, L., W. Shi, and Y. Zhou. 2019. “Study on Self‐Adjustable Variable Pendulum Tuned Mass Damper.” The Structural Design of Tall & Special Buildings 28 (1): e1561. https://doi.org/10.1002/tal.1561.
  • Wang, L., W. Shi, Y. Zhou, and Q. Zhang. 2020. “Semi-Active Eddy Current Pendulum Tuned Mass Damper with Variable Frequency and Damping.” Smart Structures and Systems 25 (1): 65–80. https://doi.org/10.12989/sss.2020.25.1.065.
  • Wright, J., & R. Farmani 2001. The Simultaneous Optimization of Building Fabric Construction, Hvac System Size, and the Plant Control Strategy. 7th IBPSA Conference, January 2014, Rio de Janeiro, Brazil. 865–872.
  • Yaqoob, H., Y. H. Teoh, T. S. Goraya, F. Sher, M. A. Jamil, T. Rashid, and K. A. Yar. 2021. “Energy Evaluation and Environmental Impact Assessment of Transportation Fuels in Pakistan.” Case Studies in Chemical and Environmental Engineering 3 (January): 100081. https://doi.org/10.1016/j.cscee.2021.100081.
  • Yaqoob, H., Y. H. Teoh, F. Sher, M. A. Jamil, M. Ali, Ü. Ağbulut, H. A. Salam, et al. 2022. “Energy, Exergy, Sustainability and Economic Analysis of Waste Tire Pyrolysis Oil Blends with Different Nanoparticle Additives in Spark Ignition Engine.” Energy 251:123697. https://doi.org/10.1016/j.energy.2022.123697.
  • Yi, Y. K., and A. M. Malkawi. 2009. “Optimizing Building Form for Energy Performance Based on Hierarchical Geometry Relation.” Automation in Construction 18 (6): 825–833. https://doi.org/10.1016/j.autcon.2009.03.006.
  • Zadeh, L. 1963. “Optimality and Non-Scalar-Valued Performance Criteria.” IEEE Transactions on Automatic Control 8 (1): 59–60. https://doi.org/10.1109/TAC.1963.1105511.
  • Zou, X. K., C. M. Chan, G. Li, and Q. Wang. 2007. “Multiobjective Optimization for Performance-Based Design of Reinforced Concrete Frames.” Journal of Structural Engineering 133 (10): 1462–1474. https://doi.org/10.1061/(asce)0733-9445(2007)133:10(1462).