Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 14, 2007 - Issue 1
251
Views
17
CrossRef citations to date
0
Altmetric
Original

Cellular events associated with the initial phase of AA amyloidogenesis: insights from a human monocyte model

, , &
Pages 51-63 | Published online: 06 Jul 2009

References

  • Benson M D. Amyloidosis. Arthritis and Allied Conditions, A Textbook of Rheumatology. 14th ed, W J Koopman. Lippencott, Williams, and Wilkins, Philadelphia, PA 2001; 1866–1895
  • Husby G, Marhaug G, Dowton B, Sletten K, Sipe J D. Serum amyloid A (SAA): Biochemistry, genetics and the pathogenesis of AA amyloidosis. Amyloid: Int J Clin Exp Invest 1994; 1: 119–137
  • Uhler C M, Whitehead A S. Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 1999; 265: 501–523
  • Hazenberg B CP. The changing face of AA amyloidosis. Amyloid and Amyloidosis, G Grateau, R A Kyle, M Skinner. CRC Press, Boca Raton, FL 2005; 517–520
  • Kluve-Beckerman B, Liepnieks J J, Wang L, Benson M D. A cell culture system for the study of amyloid pathogenesis: Amyloid formation by peritoneal macrophages cultured with recombinant serum amyloid A. Am J Pathol 1999; 155: 123–133
  • Mackiewicz A, Kushner I, Baumann H. Acute phase proteins: molecular biology, biochemistry, and clinical applications. CRC Press, Boca Raton, FL 1993
  • Jensen L E, Whitehead A S. Regulation of serum amyloid A protein expression during the acute-phase response. Biochem J 1998; 334: 489–503
  • Steinmetz A, Hocke G, Saile R, Puchois P, Fruchart J C. Influence of serum amyloid A on cholesterol esterification in human plasma. Biochim Biophys Acta 1989; 1006: 173–178
  • Banka C L, Yuan T, de Beer M C, Kindy M, Curtiss L K, de Beer F C. Serum amyloid A (SAA): influence on HDL-mediated cellular cholesterol efflux. J Lipid Res 1995; 36: 1058–1065
  • Liang J S, Schreiber B M, Salmona M, Phillip G, Gonnerman W A, de Beer F C, Sipe J D. Amino terminal region of acute phase, but not constitutive, serum amyloid A (apoSAA) specifically binds and transports cholesterol into aortic smooth muscle and HepG2 cells. J Lipid Res 1996; 37: 2109–2116
  • Lindhorst E, Young D, Bagshaw W, Hyland M, Kisilevsky R. Acute inflammation, acute phase serum amyloid A and cholesterol metabolism in the mouse. Biochim Biophys Acta 1997; 1339: 143–154
  • Pruzanski W, Stefanski E, de Beer F C, de Beer M C, Vadas P, Ravandi A, Kuksis A. Lipoproteins are substrates for human secretory group IIA phospholipase A2: preferential hydrolysis of acute phase HDL. J Lipid Res 1998; 39: 2150–2160
  • Schreiber B M. Serum amyloid A; in search of a function. Amyloid: J Protein Folding Disord 2002; 9: 279–280
  • Tam S P, Flexman A, Hulme J, Kisilevsky R. Promoting export of macrophage cholesterol: the physiological role of a major acute-phase protein, serum amyloid A 2.1. J Lipid Res 2002; 43: 1410–1420
  • Badolato R, Wang J M, Murphy W J, Lloyd A R, Michiel D F, Bausserman L L, Kelvin D J, Oppenheim J J. Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med 1994; 180: 203–209
  • Su S B, Gong W H, Gao J L, Shen W, Murphy P M, Oppenheim J J, Wang J M. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med 1999; 189: 395–402
  • Chronopoulos S, Laird D W, Ali-Khan Z. Immunolocalization of serum amyloid A and AA amyloid in lysosomes in murine monocytoid cells: Confocal and immunogold electron microscopic studies. J Pathol 1994; 173: 361–369
  • Chan S L, Chronopoulos S, Murray J, Laird D W, Ali-Khan Z. Selective localization of murine ApoSAA1/SAA2 in endosomes-lysosomes in activated macrophages and their degradation products. Amyloid: Int J Exp Clin Invest 1996; 4: 40–48
  • Rocken C, Kisilevsky R. Comparison of the binding and endocytosis of high-density lipoprotein from healthy (HDL) and inflamed (HDLSAA) donors by murine macrophages of four different mouse strains. Virchows Arch 1998; 432: 547–555
  • Kluve-Beckerman B, Manaloor J J, Liepnieks J J. Binding, trafficking, and accumulation of serum amyloid A in peritoneal macrophages. Scand J Immunol 2001; 53: 393–400
  • Shirahama T S, Cohen A S. Intralysosomal formation of amyloid fibrils. Am J Pathol 1975; 81: 101–116
  • Takahashi M, Yokota T, Kawano H, Gondo T, Ishihara T, Uchino F. Ultrastructural evidence for intracellular formation of amyloid fibrils in macrophages. Virchows Arch A 1989; 415: 411–419
  • Miura K, Shirasawa H. Amyloid A (AA) fibril formation in renal tubules occurs intracytoplasmically, possibly at the site of membrane assembling structures. Amyloid: Int J Exp Clin Invest 1994; 1: 107–113
  • Westermark G T, Engstrom U, Westermark P. The N-terminal segment of protein AA determines its fibrillogenic property. Biochem Biophys Res Commun 1992; 182: 27–33
  • Yamada T, Kluve-Beckerman B, Liepnieks J J, Benson M D. Fibril formation from recombinant human serum amyloid A. Biochim Biophys Acta 1994; 1226: 323–329
  • Axelrad M A, Kisilevsky R, Willmer J, Chen S J, Skinner M. Further characterization of amyloid-enhancing factor. Lab Invest 1982; 47: 139–146
  • Kluve-Beckerman B, Manaloor J J, Liepnieks J J. A pulse-chase study tracking the conversion of macrophage-endocytosed serum amyloid A into extracellular amyloid. Arthritis Rheum 2002; 46: 1905–1913
  • Elimova E, Kisilevsky R, Szarek W A, Ancsin J B. Amyloidogenesis recapitulated in cell culture: a peptide inhibitor provides direct evidence for the role of heparan sulfate and suggests a new treatment strategy. FASEB J 2004; 18: 1749–1751
  • Kluve-Beckerman B, Yamada T, Hardwick J, Liepnieks J J, Benson M D. Differential plasma clearance of murine acute phase serum amyloid A proteins, SAA1 and SAA2. Biochem J 1997; 322: 663–669
  • Schagger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range of 1 to 100 kDa. Anal Biochem 1987; 166: 368–379
  • Puchtler H, Sweat F, Levine M. On the binding of Congo red by amyloid. J Histochem Cytochem 1962; 10: 355–364
  • Sipe J D, McAdam K PWJ, Uchino F. Biochemical evidence for the biphasic development of experimental amyloidosis. Lab Invest 1978; 38: 110–114
  • Lavie G, Zucker-Franklin D, Franklin E C. Elastase-type proteases on the surface of human blood monocytes: Possible role in amyloid formation. J Immunol 1980; 125: 175–180
  • Skogen B, Thorsteinsson L, Natvig J B. Degradation of protein SAA to an AA-like fragment by enzymes of monocytic origin. Scand J Immunol 1980; 11: 533–540
  • Elliott-Bryant R, Liang J S, Sipe J D, Cathcart E S. Degradation of serum amyloid A in amyloid-susceptible and amyloid-resistant mouse strains. Scand J Immunol 1996; 48: 223–228
  • Ham D, Caouras V, Radzioch D, Gervais F. Degradation of amyloid A precursor protein SAA by macrophage cell lines obtained from amyloid resistant and susceptible strains of mice. Scand J Immunol 1997; 45: 354–360
  • Migita K, Yamasaki S, Shibatomi K, Ida H, Kita M, Kawakami A, Eguchi K. Impaired degradation of serum amyloid A (SAA) protein by cytokine-stimulated monocytes. Clin Exp Immunol 2001; 123: 408–411
  • Phipps-Yonas H, Pinard G, Ali-Khan Z. Humoral proinflammatory cytokine and SAA generation profiles and spatio-temporal relationship between SAA and lysosomal cathepsin B and D in murine splenic monocytoid cells during AA amyloidosis. Scand J Immunol 2004; 59: 168–176
  • Shirahama T, Miura K, Ju S T, Kisilevsky R, Gruys E, Cohen A S. Amyloid-enhancing factor-loaded macrophages in amyloid formation. Lab Invest 1990; 62: 61–68
  • Kisilevsky R, Narindrasorasak S, Tape C, Tan R, Boudreau L. During AA amyloidogenesis is proteolytic attack on serum amyloid A a pre- or post- fibrillogenic event?. Amyloid: Int J Exp Clin Invest 1994; 1: 174–183
  • Kawahara E, Shiroo M, Nakanishi I, Migita S. The role of fibronectin in the development of experimental amyloidosis. Evidence of immunohistochemical codistribution and binding property with serum amyloid protein A. Am J Pathol 1989; 134: 1305–1314
  • Magy N, Liepnieks J J, Benson M D, Kluve-Beckerman B. Amyloid-enhancing factor mediates amyloid formation on fibroblasts via a nidus/template mechanism. Arthritis Rheum 2003; 48: 1430–1437
  • Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–356
  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson C M, Stefani M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002; 416: 507–511
  • Kayed R, Head E, Thompson J L, McIntire T M, Milton S C, Cotman C W, Glabe C G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003; 300: 486–489
  • Reixach N, Deechongkit S, Jiang X, Kelly J W, Buxbaum J N. Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA 2004; 101: 2817–2822
  • Blott E J, Griffiths G M. Secretory lysosomes. Nat Rev Mol Cell Biol 2002; 3: 122–131
  • de Gassart A, Geminard C, Hoekstra D, Vidal M. Exosome secretion: the art of reutilizing nonrecycled proteins?. Traffic 2004; 5: 896–903
  • Andrei C, Margiocco P, Poggi A, Lotti L V, Torrisi M R, Rubartelli A. Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. Proc Natl Acad Sci USA 2004; 101: 9745–9750
  • Fevrier B, Vilette D, Laude H, Raposo G. Exosomes: a bubble ride for prions?. Traffic 2005; 6: 10–17
  • Kundra R, Kornfeld S. Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis. J Biol Chem 1999; 274: 31039–31046
  • Ancsin J B. Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid: J Protein Folding Disord 2003; 10: 67–79
  • McCubbin W D, Kay C M, Narindrasorasak S, Kisilevsky R. Circular-dichroism studies on two murine serum amyloid A proteins. Biochem J 1988; 256: 775–783
  • de Beer M C, de Beer F C, McCubbin W D, Kay C M, Kindy M S. Structural prerequisites for serum amyloid A fibril formation. J Biol Chem 1993; 268: 20606–20612
  • Kisilevsky R, Lemieux L J, Fraser P E, Kong X, Hultin P G, Szarek W A. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease. Nat Med 1995; 1: 143–148
  • Kisilevsky R, Szarek W A, Ancsin J B, Elimova E, Marone S, Bhat S, Berkin A. Inhibition of amyloid A amyloidogenesis in vivo and in tissue culture by 4-deoxy analogues of peracetylated 2-acetamido-2-deoxy-alpha- and beta-d-glucose: implications for the treatment of various amyloidoses. Am J Pathol 2004; 164: 2127–2137
  • Li J P, Galvis M L, Gong F, Zhang X, Zcharia E, Metzger S, Vlodavsky I, Kisilevsky R, Lindahl U. In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc Natl Acad Sci USA 2005; 102: 6473–6477
  • Sugumaran G, Elliott-Bryant R, Phung N, Vitseva O, Kuberan B, Lech M. Characterization of splenic glycosaminoglycans accumulated in vivo in experimentally induced amyloid-susceptible and amyloid-resistant mice. Scand J Immunol 2004; 60: 574–583

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.