Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 14, 2007 - Issue 3
49
Views
3
CrossRef citations to date
0
Altmetric
Original

Polyanion induced fibril growth enables the development of a reproducible assay in solution for the screening of fibril interfering compounds, and the investigation of the prion nucleation site

, , , , &
Pages 205-219 | Published online: 06 Jul 2009

References

  • Prusiner S B. Novel proteinaceous infectious particles cause scrapie. Science 1982; 216: 136–144
  • Jeffrey M, Goodsir C M, Bruce M E, McBride P A, Fraser J R. In vivo toxicity of prion protein in murine scrapie. ultrastructural and immunogold studies. Neuropathol Appl Neurobiol 1997; 23: 93–101
  • Peyrin J M, Lasmezas C I, Haik S, Tagliavini F, Salmona M, Williams A, Richie D, Deslys J P, Dormont D. Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport 1999; 10: 723–729
  • Bate C, Reid S, Williams A. Killing of prion-damaged neurones by microglia. Neuroreport 2001; 12: 2589–2594
  • Bruce M E, McBride P A, Farquhar C F. Precise targeting of the pathology of the sialoglycoprotein, PrP, and vacuolar degeneration in mouse scrapie. Neurosci Lett 1989; 102: 1–6
  • Gray F, Chretien F, Adle-Biassette H, Dorandeu A, Ereau T, Delisle M B, Kopp N, Ironside J W, Vital C. Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 1999; 58: 321–328
  • Caughey B, Lansbury P T. Protofibrils, pores, fibrils, and neurodegeneration. separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003; 26: 267–298
  • Novitskaya V, Bocharova O V, Bronstein I, Baskakov I V. Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 2006; 281: 13828–13836
  • Serpell L C, Sunde M, Blake C C. The molecular basis of amyloidosis. Cell Mol Life Sci 1997; 53: 871–887
  • Kocisko D A, Baron G S, Rubenstein R, Chen J, Kuizon S, Caughey B. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol 2003; 77: 10288–10294
  • Kocisko D A, Engel A L, Harbuck K, Arnold K M, Olsen E A, Raymond L D, Vilette D, Caughey B. Comparison of protease-resistant prion protein inhibitors in cell cultures infected with two strains of mouse and sheep scrapie. Neurosci Lett 2005; 388: 106–111
  • Breydo L, Bocharova O V, Baskakov I V. Semiautomated cell-free conversion of prion protein. applications for high-throughput screening of potential antiprion drugs. Anal Biochem 2005; 339: 165–173
  • Maxson L, Wong C, Herrmann L M, Caughey B, Baron G S. A solid-phase assay for identification of modulators of prion protein interactions. Anal Biochem 2003; 323: 54–64
  • Bocharova O V, Breydo L, Parfenov A S, Salnikov V V, Baskakov I V. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J Mol Biol 2005; 346: 645–659
  • Baskakov I V, Legname G, Baldwin M A, Prusiner S B, Cohen F E. Pathway complexity of prion protein assembly into amyloid. J Biol Chem 2002; 277: 21140–21148
  • Sokolowski F, Modler A J, Masuch R, Zirwer D, Baier M, Lutsch G, Moss D A, Gast K, Naumann D. Formation of critical oligomers is a key event during conformational transition of recombinant syrian hamster prion protein. J Biol Chem 2003; 278: 40481–40492
  • Swietnicki W, Morillas M, Chen S G, Gambetti P, Surewicz W K. Aggregation and fibrillization of the recombinant human prion protein huPrP90-231. Biochemistry 2000; 39: 424–431
  • Leffers K W, Wille H, Stohr J, Junger E, Prusiner S B, Riesner D. Assembly of natural and recombinant prion protein into fibrils. Biol Chem 2005; 386: 569–580
  • Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F. Neurotoxicity of a prion protein fragment. Nature 1993; 362: 543–546
  • Salmona M, Malesani P, De Gioia L, Gorla S, Bruschi M, Molinari A, Della Vedova F, Pedrotti B, Marrari M A, Awan T, Bugiani O, Forloni G, Tagliavini F. Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106–126. Biochem J 1999; 342(Pt 1)207–214
  • De Gioia L, Selvaggini C, Ghibaudi E, Diomede L, Bugiani O, Forloni G, Tagliavini F, Salmona M. Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. J Biol Chem 1994; 269: 7859–7862
  • Jobling M F, Stewart L R, White A R, McLean C, Friedhuber A, Maher F, Beyreuther K, Masters C L, Barrow C J, Collins S J, Cappai R. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. J Neurochem 1999; 73: 1557–1565
  • Florio T, Paludi D, Villa V, Principe D R, Corsaro A, Millo E, Damonte G, D'Arrigo C, Russo C, Schettini G, Aceto A. Contribution of two conserved glycine residues to fibrillogenesis of the 106–126 prion protein fragment. Evidence that a soluble variant of the 106–126 peptide is neurotoxic. J Neurochem 2003; 85: 62–72
  • Boshuizen R S, Langeveld J P, Salmona M, Williams A, Meloen R H, Langedijk J P. An in vitro screening assay based on synthetic prion protein peptides for identification of fibril-interfering compounds. Anal Biochem 2004; 333: 372–380
  • Sellarajah S, Lekishvili T, Bowring C, Thompsett A R, Rudyk H, Birkett C R, Brown D R, Gilbert I H. Synthesis of analogues of Congo red and evaluation of their anti-prion activity. J Med Chem 2004; 47: 5515–5534
  • Caughey B, Caughey W S, Kocisko D A, Lee K S, Silveira J R, Morrey J D. Prions and transmissible spongiform encephalopathy (TSE) chemotherapeutics. A common mechanism for anti-TSE compounds?. Acc Chem Res 2006; 39: 646–653
  • Bertsch U, Winklhofer K F, Hirschberger T, Bieschke J, Weber P, Hartl F U, Tavan P, Tatzelt J, Kretzschmar H A, Giese A. Systematic identification of antiprion drugs by high-throughput screening based on scanning for intensely fluorescent targets. J Virol 2005; 79: 7785–7791
  • Forloni G, Iussich S, Awan T, Colombo L, Angeretti N, Girola L, Bertani I, Poli G, Caramelli M, Grazia Bruzzone M, Farina L, Limido L, Rossi G, Giaccone G, Ironside J W, Bugiani O, Salmona M, Tagliavini F. Tetracyclines affect prion infectivity. Proc Natl Acad Sci U S A 2002; 99: 10849–10854
  • Tagliavini F, Forloni G, Colombo L, Rossi G, Girola L, Canciani B, Angeretti N, Giampaolo L, Peressini E, Awan T, De Gioia L, Ragg E, Bugiani O, Salmona M. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J Mol Biol 2000; 300: 1309–1322
  • Soto C, Kindy M S, Baumann M, Frangione B. Inhibition of Alzheimer's amyloidosis by peptides that prevent beta-sheet conformation. Biochem Biophys Res Commun 1996; 226: 672–680
  • Soto C, Kascsak R J, Saborio G P, Aucouturier P, Wisniewski T, Prelli F, Kascsak R, Mendez E, Harris D A, Ironside J, Tagliavini F, Carp R I, Frangione B. Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet 2000; 355: 192–197
  • Langedijk J P, Fuentes G, Boshuizen R, Bonvin A M. Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies. J Mol Biol 2006; 360: 907–920
  • Govaerts C, Wille H, Prusiner S B, Cohen F E. Evidence for assembly of prions with left-handed beta-helices into trimers. Proc Natl Acad Sci U S A 2004; 101: 8342–8347
  • Nelson R, Sawaya M R, Balbirnie M, Madsen A O, Riekel C, Grothe R, Eisenberg D. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005; 435: 773–778
  • Caughey B, Brown K, Raymond G J, Katzenstein G E, Thresher W. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red [corrected]. J Virol 1994; 68: 2135–2141
  • Castillo G M, Lukito W, Wight T N, Snow A D. The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. J Neurochem 1999; 72: 1681–1687
  • Jenkins J, Pickersgill R. The architecture of parallel beta-helices and related folds. Prog Biophys Mol Biol 2001; 77: 111–175
  • Klajnert B, Cortijo-Arellano M, Bryszewska M, Cladera J. Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer's and prion diseases. Biochem Biophys Res Commun 2006; 339: 577–582
  • Nandi P K, Leclerc E. Polymerization of murine recombinant prion protein in nucleic acid solution. Arch Virol 1999; 144: 1751–1763
  • Yang D S, Serpell L C, Yip C M, McLaurin J, Chrishti M A, Horne P, Boudreau L, Kisilevsky R, Westaway D, Fraser P E. Assembly of Alzheimer's amyloid-beta fibrils and approaches for therapeutic intervention. Amyloid J Protein Fold Dis 2001; 8(Suppl 1)10–19
  • Wong C, Xiong L W, Horiuchi M, Raymond L, Wehrly K, Chesebro B, Caughey B. Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. Embo J 2001; 20: 377–386
  • Deleault N R, Geoghegan J C, Nishina K, Kascsak R, Williamson R A, Supattapone S. Protease-resistant prion protein amplification reconstituted with partially purified substrates and synthetic polyanions. J Biol Chem 2005; 280: 26873–26879
  • Pan T, Wong B S, Liu T, Li R, Petersen R B, Sy M S. Cell-surface prion protein interacts with glycosaminoglycans. Biochem J 2002; 368: 81–90
  • Warner R G, Hundt C, Weiss S, Turnbull J E. Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 2002; 277: 18421–18430
  • Cardin A D, Weintraub H J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 1989; 9: 21–32
  • Gonzalez-Iglesias R, Pajares M A, Ocal C, Espinosa J C, Oesch B, Gasset M. Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges. J Mol Biol 2002; 319: 527–540
  • Aronoff-Spencer E, Burns C S, Avdievich N I, Gerfen G J, Peisach J, Antholine W E, Ball H L, Cohen F E, Prusiner S B, Millhauser G L. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 2000; 39: 13760–13771
  • Walter E D, Chattopadhyay M, Millhauser G L. The affinity of copper binding to the prion protein octarepeat domain. evidence for negative cooperativity. Biochemistry 2006; 45: 13083–13092
  • Bocharova O V, Breydo L, Salnikov V V, Baskakov I V. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry 2005; 44: 6776–6787
  • Ricchelli F, Buggio R, Drago D, Salmona M, Forloni G, Negro A, Tognon G, Zatta P. Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Straussler-Scheinker disease peptides in the presence of metal ions. Biochemistry 2006; 45: 6724–6732
  • Gaggelli E, Bernardi F, Molteni E, Pogni R, Valensin D, Valensin G, Remelli M, Luczkowski M, Kozlowski H. Interaction of the human prion PrP(106–126) sequence with copper(II), manganese(II), and zinc(II). NMR and EPR studies. J Am Chem Soc 2005; 127: 996–1006
  • Haik S, Peyrin J M, Lins L, Rosseneu M Y, Brasseur R, Langeveld J P, Tagliavini F, Deslys J P, Lasmezas C, Dormont D. Neurotoxicity of the putative transmembrane domain of the prion protein. Neurobiol Dis 2000; 7: 644–656
  • Fields C G, Lloyd D H, Macdonald R L, Otteson K M, Noble R L. HBTU activation for automated Fmoc solid-phase peptide synthesis. Pept Res 1991; 4: 95–101
  • Evans K C, Berger E P, Cho C G, Weisgraber K H, Lansbury P T, Jr. Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation. implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci U S A 1995; 92: 763–767
  • Familian A, Boshuizen R S, Eikelenboom P, Veerhuis R. Inhibitory effect of minocycline on amyloid beta fibril formation and human microglial activation. Glia 2006; 53: 233–240
  • Farquhar C F, Dickinson A G. Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. J Gen Virol 1986; 67(Pt 3)463–473
  • Kimberlin R H, Walker C A. Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob Agents Chemother 1986; 30: 409–413
  • McBride P A, Wilson M I, Eikelenboom P, Tunstall A, Bruce M E. Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice. Exp Neurol 1998; 149: 447–454
  • Perez M, Wandosell F, Colaco C, Avila J. Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment. Biochem J 1998; 335(Pt 2)369–374
  • Gasset M, Baldwin M A, Lloyd D H, Gabriel J M, Holtzman D M, Cohen F, Fletterick R, Prusiner S B. Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Natl Acad Sci U S A 1992; 89: 10940–10944
  • Petty S A, Adalsteinsson T, Decatur S M. Correlations among morphology, beta-sheet stability, and molecular structure in prion peptide aggregates. Biochemistry 2005; 44: 4720–4726
  • Kretzschmar H A, Stowring L E, Westaway D, Stubblebine W H, Prusiner S B, Dearmond S J. Molecular cloning of a human prion protein cDNA. Dna 1986; 5: 315–324

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.